9 resultados para Mine Heat Management

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work is focused on the demonstration of the advantages of miniaturized reactor systems which are essential for processes where potential for considerable heat transfer intensification exists as well as for kinetic studies of highly exothermic reactions at near-isothermal conditions. The heat transfer characteristics of four different cross-flow designs of a microstructured reactor/heat-exchanger (MRHE) were studied by CFD simulation using ammonia oxidation on a platinum catalyst as a model reaction. An appropriate distribution of the nitrogen flow used as a coolant can decrease drastically the axial temperature gradient in the reaction channels. In case of a microreactor made of a highly conductive material, the temperature non-uniformity in the reactor is strongly dependent on the distance between the reaction and cooling channels. Appropriate design of a single periodic reactor/heat-exchanger unit, combined with a non-uniform inlet coolant distribution, reduces the temperature gradients in the complete reactor to less than 4degreesC, even at conditions corresponding to an adiabatic temperature rise of about 1400degreesC, which are generally not accessible in conventional reactors because of the danger of runaway reactions. To obtain the required coolant flow distribution, an optimization study was performed to acquire the particular geometry of the inlet and outlet chambers in the microreactor/heat-exchanger. The predicted temperature profiles are in good agreement with experimental data from temperature sensors located along the reactant and coolant flows. The results demonstrate the clear potential of microstructured devices as reliable instruments for kinetic research as well as for proper heat management in the case of highly exothermic reactions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In complex hydrogeological environments the effective management of groundwater quality problems by pump-and-treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C-, H-, O-, S-stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (d34S(SO4) ~= -1.6‰, d18O(SO4) ~= +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in-mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal management as a method of heightening performance in miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and the industry. One of the current challenges is to design heat sinks with uniform flow distribution. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three dimensional mixture model from the computational fluid dynamics software, FLUENT 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3 of the channel length, and their widths were one and two times larger than the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement of up to 55% on flow distribution compared with the standard straight channel configuration without a penalty in the pressure drop. Further discussion about the effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On 25 April 1998 part of the tailings pond dike of the Aznalcollar Zn mine north of the Guadalquivir marshes (Donana) in southern Spain collapsed releasing an estimated 5 million m3 of acidic metal-rich waste. This event contaminated farmland and wetland up to >40 km downstream, including the 900-ha 'Entremuros', an important area for birds within the Donana world heritage site. In spite of the contamination, birds continued to feed in this area. Samples of two abundant macrophytes (Typha dominguensis and Scirpus maritimus) were taken from the Entremuros and nearby uncontaminated areas; these plants are important food items for several bird species. Analyses showed that in the Entremuros mean plant tissue concentrations of Cd were 3-40-fold (0.8-7.4 ppm) and Zn 20-100-fold (20-3384 ppm) greater than those from control areas. Comparable dietary concentrations of Zn have been reported to cause severe physiological damage to aquatic birds under experimental conditions. Elevated Cd concentrations are of concern as Cd bioconcentrates and is a cumulative poison. Metals released in this accident are moving into this food-chain and present a considerable risk to species feeding on Typha sp. and Scirpus sp. Many other food-webs exist in this area and require detailed examination to identify the species at risk, and to facilitate the management of these risks to minimise future impacts to the wildlife of Donana. Copyright (C) 1999 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of ground source heat pump (GSHP) systems are used as an aid for the correct design and optimization of the system. For this purpose, it is necessary to develop models which correctly reproduce the dynamic thermal behavior of each component in a short-term basis. Since the borehole heat exchanger (BHE) is one of the main components, special attention should be paid to ensuring a good accuracy on the prediction of the short-term response of the boreholes. The BHE models found in literature which are suitable for short-term simulations usually present high computational costs. In this work, a novel TRNSYS type implementing a borehole-to-ground (B2G) model, developed for modeling the short-term dynamic performance of a BHE with low computational cost, is presented. The model has been validated against experimental data from a GSHP system located at Universitat Politècnica de València, Spain. Validation results show the ability of the model to reproduce the short-term behavior of the borehole, both for a step-test and under normal operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reuse of industrial by-products is important for members of numerous industrial sectors. However, though the benefits of reuse are evident from an economical point of view, some compounds in these materials can have a negative effect on users' health.In this study, the radon emanation and exhalation features of red mud were surveyed using heat-treatment (100-1200 °C). As a result of the 1200°C-treated samples, massic radon exhalation capacity reduced from 75 ± 10 mBq kg-1 h-1 to 7 ± 4 mBq kg-1 h-1, approximately 10% of the initial exhalation rate.To find an explanation for internal structural changes, the porosity features of the heat-treated samples were also investigated. It was found that the cumulative pore volume reduced significantly in less than 100 nm, which can explain the reduced massic exhalation capacity in the high temperature treated range mentioned above.SEM snapshots were taken of the surfaces of the samples as visual evidence for superficial morphological changes. It was found that the surface of the high temperature treated samples had changed, proving the decrement of open pores on the surface.