2 resultados para Mimo II

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose general-order transmit antenna selection to enhance the secrecy performance of multiple-input–multiple-output multieavesdropper channels with outdated channel state information (CSI) at the transmitter. To evaluate the effect of the outdated CSI on the secure transmission of the system, we investigate the secrecy performance for two practical scenarios, i.e., Scenarios I and II, where the eavesdropper's CSI is not available at the transmitter and is available at the transmitter, respectively. For Scenario I, we derive exact and asymptotic closed-form expressions for the secrecy outage probability in Nakagami- m fading channels. In addition, we also derive the probability of nonzero secrecy capacity and the \varepsilon -outage secrecy capacity, respectively. Simple asymptotic expressions for the secrecy outage probability reveal that the secrecy diversity order is reduced when the CSI is outdated at the transmitter, and it is independent of the number of antennas at each eavesdropper N_text\rm{E} , the fading parameter of the eavesdropper's channel m_text\rm{E} , and the number of eavesdroppers M . For Scenario II, we make a comprehensive analysis of the average secrecy capacity obtained by the system. Specifically, new closed-form expressions for the exact and asymptotic average secrecy capacity are derived, which are valid for general systems with an arbitrary number of antennas, number of eavesdroppers, and fading severity parameters. Resorting to these results, we also determine a high signal-to-noise ratio power offset to explicitly quantify the impact of the main c- annel and the eavesdropper's channel on the average secrecy capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a multipair relay channel, where multiple sources communicate with multiple destinations with the help of a full-duplex (FD) relay station (RS). All sources and destinations have a single antenna, while the RS is equipped with massive arrays. We assume that the RS estimates the channels by using training sequences transmitted from sources and destinations. Then, it uses maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To significantly reduce the loop interference (LI) effect, we propose two massive MIMO processing techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the RS. We derive an exact achievable rate in closed-form and evaluate the system spectral efficiency. We show that, by doubling the number of antennas at the RS, the transmit power of each source and of the RS can be reduced by 1.5 dB if the pilot power is equal to the signal power and by 3 dB if the pilot power is kept fixed, while maintaining a given quality-of-service. Furthermore, we compare FD and half-duplex (HD) modes and show that FD improves significantly the performance when the LI level is low.