19 resultados para Millennium (Computer system)

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of barcode technology to capture data on pharmacists' clinical interventions is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SAL system embodies a new kind of human-computer interaction, where a person and a computer carry out a fluent, emotionally coloured conversation. Because that kind of capability is new, evaluating systems that have it is a new challenge. This paper outlines techniques that have been developed to evaluate SAL interactions, and uses the case to highlight the range of variables that become relevant in dealing with systems of this order of complexity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment of infant pain is a pressing concern, especially within the context of neonatal intensive care where infants may be exposed to prolonged and repeated pain during lengthy hospitalization. In the present study the feasibility of carrying out the complete Neonatal Facial Coding System (NFCS) in real time at bedside, specifically reliability, construct and concurrent validity, was evaluated in a tertiary level Neonatal Intensive Care Unit (NICU). Heel lance was used as a model of procedural pain, and observed with n = 40 infants at 32 weeks gestational age. Infant sleep/wake state, NFCS facial activity and specific hand movements were coded during baseline, unwrap, swab, heel lance, squeezing and recovery events. Heart rate was recorded continuously and digitally sampled using a custom designed computer system. Repeated measures analysis of variance (ANOVA) showed statistically significant differences across events for facial activity (P <0.0001) and heart rate (P <0.0001). Planned comparisons showed facial activity unchanged during baseline, swab and unwrap, then increased significantly during heel lance (P <0.0001), increased further during squeezing (P <0.003), then decreased during recovery (P <0.0001). Systematic shifts in sleep/wake state were apparent. Rise in facial activity was consistent with increased heart rate, except that facial activity more closely paralleled initiation of the invasive event. Thus facial display was more specific to tissue damage compared with heart rate. Inter-observer reliability was high. Construct validity of the NFCS at bedside was demonstrated as invasive procedures were distinguished from tactile. While bedside coding of behavior does not permit raters to be blind to events, mechanical recording of heart rate allowed for an independent source of concurrent validation for bedside application of the NFCS scale.