34 resultados para Microstructural evaluations
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.
Resumo:
It is often suggested that people in potentially threatening situations might engage in self-enhancing temporal comparisons that allow them to view themselves and their experience in a more positive light. Data from semistructured interviews with 12 individuals in the UK diagnosed as having schizophrenia were content analyzed to explore patterns of temporal comparison. The study found that the onset of schizophrenic symptoms created a new baseline in participants' representations of their past, with different types of temporal comparisons occurring before and after this point. Although comparisons with past selves after onset supported the suggestion that people may select and construct their past in such a manner that permits them to see their present circumstances more positively and envisage a better future, comparisons with past selves before onset were more negative. The findings suggest that the Theory of Temporal Self-Appraisals (Ross I Wilson, 2000) needs to be elaborated to include people who have experienced major life changes. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In investigating intergroup attitudes, previous research in developmental psychology has frequently confounded ingroup favouritism and outgroup derogation. The present study, using unconfounded measures, examines the possibility that ingroup favouritism and outgroup derogation are distinct phenomena. Six-year-old children (n=594) from five, culturally diverse nations were asked to make various evaluations of the national ingroup and of four national outgroups. The data indicate that although there is overwhelming evidence that young children favour the ingroup over other groups, outgroup derogation is limited in extent and appears to reproduce attitudes held by adult members of the particular nations investigated.
Resumo:
In this article, we have prepared hot-melt-extruded solid dispersions of bicalutamide (BL) using poly(ethylene oxide) (PEO) as a matrix platform. Prior to preparation, miscibility of PEO and BL was assessed using differential scanning calorimetry (DSC). The onset of BL melting was signi?cantly depressed in the presence of PEO, and using Flory– Huggins (FH) theory, we identi?ed a negative value of -3.4, con?rming miscibility. Additionally, using FH lattice theory, we estimated the Gibbs free energy of mixing which was shown to be negative, passing through a minimum at a polymer fraction of 0.55. Using these data, solid dispersions at drug-to-polymer ratios of 1:10, 2:10 and 3:10 were prepared via hot-melt extrusion. Using a combination of DSC, powder X-ray diffractometry and scanning electron
microscopy, amorphous dispersions of BL were con?rmed at the lower two drug loadings. At the 3:10 BL to PEO ratio, crystalline BL was detected. The percent crystallinity of PEO was reduced by approximately 10% in all formulations following extrusion. The increased amorphous content within PEO following extrusion accommodated amorphous BL at drug to polymer loadings up to 2:10; however, the increased amorphous domains with PEO following extrusion were not suf?cient to fully accommodate BL at drug-to-polymer ratios of 3:10.