15 resultados para Melnikov chaos prediction theory
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The removal of acid dyes, Tectilon Blue 4R, Tectilon Red 2B and Tectilon Orange 3G, from single solute, bisolute and trisolute solutions by adsorption on activated carbon (GAC F400) has been investigated in isotherm experiments. Results from these experiments were modelled using the Langmuir and Freundlich adsorption isotherm theories with the Langmuir model proving to be the more suitable. The Ideal Adsorbed Solution (IAS) model was coupled with the Langmuir isotherm to predict binary adsorption on the dyes. The application of the IAS theory accurately simulated the experimental data with an average deviation of approximately 3% between modelled and experimental data.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.
Resumo:
Computing has recently reached an inflection point with the introduction of multicore processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores; however, in several domains, users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications and a runtime system that uses live program analysis to optimize applications dynamically. We describe a dynamic phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8 percent, simultaneous with an improvement in performance of 17.9 percent, resulting in energy savings of 26.7 percent.
Resumo:
The prediction and management of ecosystem responses to global environmental change would profit from a clearer understanding of the mechanisms determining the structure and dynamics of ecological communities. The analytic theory presented here develops a causally closed picture for the mechanisms controlling community and population size structure, in particular community size spectra, and their dynamic responses to perturbations, with emphasis on marine ecosystems. Important implications are summarised in non-technical form. These include the identification of three different responses of community size spectra to size-specific pressures (of which one is the classical trophic cascade), an explanation for the observed slow recovery of fish communities from exploitation, and clarification of the mechanism controlling predation mortality rates. The theory builds on a community model that describes trophic interactions among size-structured populations and explicitly represents the full life cycles of species. An approximate time-dependent analytic solution of the model is obtained by coarse graining over maturation body sizes to obtain a simple description of the model steady state, linearising near the steady state, and then eliminating intraspecific size structure by means of the quasi-neutral approximation. The result is a convolution equation for trophic interactions among species of different maturation body sizes, which is solved analytically using a novel technique based on a multiscale expansion.
Resumo:
Multiscale micro-mechanics theory is extensively used for the prediction of the material response and damage analysis of unidirectional lamina using a representative volume element (RVE). Th is paper presents a RVE-based approach to characterize the materi al response of a multi-fibre cross-ply laminate considering the effect of matrix damage and fibre-matrix interfacial strength. The framework of the homogenization theory for periodic media has been used for the analysis of a 'multi-fibre multi-layer representative volume element' (M2 RVE) representing cross-ply laminate. The non-homogeneous stress-strain fields within the M2RVE are related to the average stresses and strains by using Gauss theorem and the Hill-Mandal strain energy equivalence principle. The interfacial bonding strength affects the in-plane shear stress-strain response significantl y. The material response predicted by M2 RVE is in good agreement with the experimental results available in the literature. The maximum difference between the shear stress predicted using M2 RVE and the experimental results is ~15% for the bonding strength of 30MPa at the strain value of 1.1%
Resumo:
Darwin's On the Origin of Species has led to a theory of evolution with a mass of empirical detail on population genetics below species level, together with heated debate on the details of macroevolutionary patterns above species level. Most of the main principles are clear and generally accepted, notably that life originated once and has evolved over time by descent with modification. Here, I review the fossil and molecular phylogenetic records of the response of life on Earth to Quaternary climatic changes. I suggest that the record can be best understood in terms of the nonlinear dynamics of the relationship between genotype and phenotype, and between climate and environments. 'The origin of species' is essentially unpredictable, but is nevertheless an inevitable consequence of the way that organisms reproduce through time. The process is 'chaotic', but not 'random'. I suggest that biodiversity is best considered as continuously branching systems of lineages, where 'species' are the branch tips. The Earth's biodiversity should thus (1) be in a state of continuous increase and (2) show continuous discrepancies between genetic and morphological data in time and space. © The Palaeontological Association.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.
Resumo:
Abstract. Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.
Resumo:
Coastal and estuarine landforms provide a physical template that not only accommodates diverse ecosystem functions and human activities, but also mediates flood and erosion risks that are expected to increase with climate change. In this paper, we explore some of the issues associated with the conceptualisation and modelling of coastal morphological change at time and space scales relevant to managers and policy makers. Firstly, we revisit the question of how to define the most appropriate scales at which to seek quantitative predictions of landform change within an age defined by human interference with natural sediment systems and by the prospect of significant changes in climate and ocean forcing. Secondly, we consider the theoretical bases and conceptual frameworks for determining which processes are most important at a given scale of interest and the related problem of how to translate this understanding into models that are computationally feasible, retain a sound physical basis and demonstrate useful predictive skill. In particular, we explore the limitations of a primary scale approach and the extent to which these can be resolved with reference to the concept of the coastal tract and application of systems theory. Thirdly, we consider the importance of different styles of landform change and the need to resolve not only incremental evolution of morphology but also changes in the qualitative dynamics of a system and/or its gross morphological configuration. The extreme complexity and spatially distributed nature of landform systems means that quantitative prediction of future changes must necessarily be approached through mechanistic modelling of some form or another. Geomorphology has increasingly embraced so-called ‘reduced complexity’ models as a means of moving from an essentially reductionist focus on the mechanics of sediment transport towards a more synthesist view of landform evolution. However, there is little consensus on exactly what constitutes a reduced complexity model and the term itself is both misleading and, arguably, unhelpful. Accordingly, we synthesise a set of requirements for what might be termed ‘appropriate complexity modelling’ of quantitative coastal morphological change at scales commensurate with contemporary management and policy-making requirements: 1) The system being studied must be bounded with reference to the time and space scales at which behaviours of interest emerge and/or scientific or management problems arise; 2) model complexity and comprehensiveness must be appropriate to the problem at hand; 3) modellers should seek a priori insights into what kind of behaviours are likely to be evident at the scale of interest and the extent to which the behavioural validity of a model may be constrained by its underlying assumptions and its comprehensiveness; 4) informed by qualitative insights into likely dynamic behaviour, models should then be formulated with a view to resolving critical state changes; and 5) meso-scale modelling of coastal morphological change should reflect critically on the role of modelling and its relation to the observable world.
Resumo:
We calculate near-threshold bound states and Feshbach resonance positions for atom–rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J=0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J>0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J=0) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.