3 resultados para Megafauna

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Causes of late Quaternary extinctions of large mammals (" megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or con-fined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tischoferhohle and Pendling-Barenhohle near Kufstein, Tyrol, are among the only locations where remains of cave bear, Ursus spelaeus-group, were found in the western part of Austria. One sample from each site was radiocarbon-dated four decades ago to ca. 28 C-14 ka BP. Here we report that attempts to date additional samples from Pendling-Barenhohle have failed due to the lack of collagen, casting doubts on the validity of the original measurement. We also unsuccessfully tried to date flowstone clasts embedded in the bone-bearing sediment to provide maximum constraints on the age of this sediment. Ten cave bear bones from Tischoferhohle showing good collagen preservation were radiocarbon-dated to 31.1-39.9 C-14 ka BP, again pointing towards an age underestimation by the original radiocarbon-dated sample from this site. These new dates from Tischoferhohle are therefore currently the only reliable cave bear dates in western Austria and constrain the interval of cave occupation to 44.3-33.5 cal ka BP. We re-calibrate and re-evaluate dates of alpine cave bear samples in the context of available palaeoclimate information from the greater alpine region covering the transition into the Last Glacial Maximum, eventually leading to the demise of this megafauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean-atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010-2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between similar to 140 and 55 lea, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5