2 resultados para Meat Quality
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Three hundred and twenty pigs were reared from birth to slaughter at 21 weeks in either barren or enriched environments. The barren environments were defined as intensive housing (slatted floors and minimum recommended space allowances) and the enriched environments incorporated extra space, an area which contained peat and straw in a rack. Behavioural observations showed that environmental enrichment reduced time spent inactive and time spent involved in harmful social and aggressive behaviour while increasing the time spent in exploratory behaviour. During the finishing period (15-21 weeks) mean daily food intakes were higher and food conversion ratios were lower for pigs in enriched environments compared with their counterparts in barren environments (P
Resumo:
The potential of Raman spectroscopy for the determination of meat quality attributes has been investigated using data from a set of 52 cooked beef samples, which were rated by trained taste panels. The Raman spectra, shear force and cooking loss were measured and PLS used to correlate the attributes with the Raman data. Good correlations and standard errors of prediction were found when the Raman data were used to predict the panels' rating of acceptability of texture (R-2 = 0.71, Residual Mean Standard Error of Prediction (RMSEP)% of the mean (mu) = 15%), degree of tenderness (R-2 = 0.65, RMSEP% of mu = 18%), degree of juiciness (R-2 = 0.62, RMSEP% of mu = 16%), and overall acceptability (R-2 = 0.67, RMSEP% of mu = 11%). In contrast, the mechanically determined shear force was poorly correlated with tenderness (R-2 = 0.15). Tentative interpretation of the plots of the regression coefficients suggests that the alpha-helix to beta-sheet ratio of the proteins and the hydrophobicity of the myofibrillar environment are important factors contributing to the shear force, tenderness, texture and overall acceptability of the beef. In summary, this work demonstrates that Raman spectroscopy can be used to predict consumer-perceived beef quality. In part, this overall success is due to the fact that the Raman method predicts texture and tenderness, which are the predominant factors in determining overall acceptability in the Western world. Nonetheless, it is clear that Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of beef quality parameters.