10 resultados para Marsilio de Padua
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Neutron diffraction has been used to determine the liquid structure of 1,3-dimethylimidazolium bis{( trifluoromethyl) sulfonyl} amide ([dmim][NTf2]). Significantly smaller charge ordering is found in this liquid compared with analogous chloride and hexafluorophosphate salts due to the diffuse charge density and size of the [NTf2](-) anion. This is manifested in a much larger cation-cation and cation-anion separation and an overlap of the cation-cation and cation-anion shells. Comparison of the liquid structure with the crystal structure reported by Holbrey et al. ( Dalton Trans. 2004, 2267) indicates little correlation, for example, the [NTf2](-) anion adopts a trans orientation predominantly in the liquid whereas a cis orientation is found in the solid phase.
Resumo:
A set of 1-alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [C(n)mim][CkSO3], formed by the variation of the alkyl chain lengths both in the cation and the anion (n = 1-6, 8, or 10; k = 1-4, or 6), was synthesised, with sixteen of them being novel. The ionic liquids were characterised by H-1 and C-13 NMR spectroscopy, and mass spectrometry. Their viscosities and densities as a function of temperature, as well as melting points and decomposition temperatures, were determined. The molecular volumes, both experimental and calculated, were found to depend linearly on the sum (n + k).
Resumo:
Densities and viscosities were measured as a function of temperature for six ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium ethylsulfate and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide. The density and the viscosity were obtained using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific at temperatures up to 393 K and 388 K with an accuracy of 10-3 g cm-3 and 1%, respectively. The effect of the presence of water on the measured values was also examined by studying both dried and water-saturated samples. A qualitative analysis of the evolution of density and viscosity with cation and anion chemical structures was performed. © The Royal Society of Chemistry 2006.
Resumo:
Densities and viscosities of the ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [C4C1Im][C8SO4] were measured as a function of temperature between 313 K and 395 K. Solubilities of hydrogen and carbon dioxide were determined, between 283 K and 343 K, and at pressures close to atmospheric in [C4C1Im][C 8SO4] and in another ionic liquid based on the alkylsulfate anion-1-ethyl-3-methylimidazolium ethylsulfate, [C 2C1Im][C2SO4]. Density and viscosity were measured using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific with accuracies of 10-3 g cm -3 and 1%, respectively. Solubilities were obtained using an isochoric saturation technique and, from the variation of solubility with temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs energy, the enthalpy, and the entropy, are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © The Royal Society of Chemistry.
Resumo:
Raman spectra in the range of the totally symmetric stretching mode of the [PF6]− anion, νs(PF6), have been measured for 1-alkyl-3-methylimidazolium ionic liquids [CnC1im][PF6], for n = 4, 6, and 8, as a function of pressure at room temperature. The ionic liquids [C6C1im][PF6] and [C8C1im][PF6] remain in an amorphous phase up to 3.5 GPa, in contrast to [C4C1im][PF6], whichcrystallizes above ∼0.5 GPa. Equations of state based either on a group contribution model or Carnahan-Starling-van der Waals model have been used to estimate the densities of the ionic liquids at high pressures. The shifts of the vibrational frequency of νs(PF6) with density observed in [C6C1im][PF6] and in [C8C1im][PF6] have been calculated by a hard-sphere model of a pseudo-diatomic solute under short-range repulsive interactions with the neighboring particles. The stochastic model of Kubo for vibrational dephasing has been used to obtain the amplitude of vibrational frequency fluctuation, ⟨Δω 2⟩, and the relaxation time of frequency fluctuation, τ c , as a function of density by Raman band shape analysis of the νs(PF6) mode of [C6C1im][PF6] and [C8C1im][PF6].
Resumo:
BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.
METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.
RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.
CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.