25 resultados para Marine reservoir correction

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calibration is essential for interpretation of radiocarbon dates, especially when the 14C dates are compared to historical or climatic records with a different chronological basis. 14C ages of samples from the marine environment, such as shells or fish bones, or samples with a marine component, such as human bone in coastal regions, require an additional consideration because of the reservoir age of the ocean. While the pre-industrial global mean reservoir correction, R(t), is about 400 years, local variations (?R) can be several hundred years or more. ?R compilations on a global scale have been undertaken previously (Stuiver et al. 1986; Stuiver and Braziunas 1993), but have not been updated recently. Here we describe an on-line reservoir correction database accessed via mapping software. Rather than publishing a static ?R compilation, new data will be incorporated when it becomes available. The on-line marine reservoir correction database can be accessed at the website http://www.calib.org/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to calibrate radiocarbon ages based on samples with a marine carbon component it is important to know the marine carbon reservoir correction or Delta R value. This study measured the Delta R on both known-age pre-bomb marine shells and paired marine and terrestrial samples from two regions on the west coast of South Africa: the southwestern Cape and Namaqualand. Pooling the data by region produces Delta R values that are similar enough to use a west coast weighted mean Delta R of 146 +/- 85 C-14 years to correctly calibrate marine shell or mixed marine and terrestrial C-14 ages. There are however temporal differences in Delta R throughout the Holocene, which we compare with proxy data for upwelling and sea surface temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mollusk shells are frequently radiocarbon dated and provide reliable calibrated age ranges when the regional marine reservoir correction is well-established. For mollusks from an estuarine environment the reservoir correction may be significantly different than the regional marine reservoir correction due to the input of bedrock or soil derived carbonates. Some mollusk species such as oysters are tolerant of a significant range of salinities which makes it difficult to determine which reservoir correction is appropriate. A case study is presented of an anomalous radiocarbon age for an oyster shell paint dish found in the fabric of the ruined nave walls of St Mary's Church, Shoreham-by-Sea, West Sussex, England. Stable isotopes (delta O-18 and delta C-13) were used to establish the type of environment in which the oyster had lived. Paired marine and terrestrial samples from a nearby medieval site were radiocarbon dated to provide an appropriate reservoir correction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A marine reservoir correction database and on-line interface.
Radiocarbon 43:461-463

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first marine reservoir age and Delta R determination for the island of St. Helena using marine mollusk radiocarbon dates obtained from an historical context of known age. This represents the first marine reservoir a.-c and Delta R determination in the southern Atlantic Ocean within thousands of kilometers of the island. The depletion of C-14 in the shells indicates a rather larger reservoir age for that portion of the surface Atlantic than models indicate. The implication is that upwelling old water along the Namibian coast is transported for a considerable distance, although it is likely to be variable on a decadal timescale. An artilleryman's button, together with other artifacts found in a midden, demonstrate association of the mollusk shells with a narrow historic period of AD 1815-1835.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tephrochronological age models and 48 14C age determinations on molluscs and foraminifera (planktonic and benthic) are applied for the calculation of marine 14C reservoir age variability during a time period covering the Heinrich event H1 to early Holocene (16–9 cal kyr BP). Our data source consists of four high-resolution marine sediment cores (HM107-04, HM107-05, MD99-2271, MD99-2275) from the North Icelandic shelf. The marine reservoir age (ΔR) is found to be extremely variable, ranging from 385 to 1065 14C years. Extreme ΔR values occur at the end of H1, with values around 1000 14C years (~15 cal kyr BP), probably due to reduced northward flow of well-ventilated subtropical surface waters and a southward expansion of polar waters, as well as an expansion of sea ice limiting air-sea gas exchange. With the onset of the Bølling-Allerød interstadial, the ΔR values decrease towards 0 14C years suggesting a more vigorous North Atlantic Current and an active meridional overturning circulation system. During the Younger Dryas stadial, ΔR values are consistently around 700 14C years suggesting e renewed expansion of polar waters and a weakened meridional overtuning circulation. Interestingly, ΔR values remain high (~200 14C years) at the onset of the Holocene suggesting continued high influence of polar waters. Subsequently, ΔR values rapidly decrease to ~¬ 250 14C years around 11 cal kyr BP, indicating increased air-sea CO2 exchange with the coeval atmosphere. The ΔR values average around 0 14C years from around 10.5 to 9.0 cal kyr BP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater resources in past diets can lead to inaccuracies when attempts are made to ascertain their radiocarbon ages or those of the consumers. Radiocarbon reservoir effects may lead to significant age offsets when the bones or other tissues of these consumers are radiocarbon dated. A number of recent studies have investigated freshwater reservoir offsets. However no study thus far has satisfactorily obtained a ubiquitous freshwater reservoir correction due to variability in the ecosystems analysed. This study tests the possibility of predicting freshwater reservoir effects from the carbonate alkalinity of the water with measurements on modern fish bone and water samples. A predictive capability would be especially valuable in the absence of well-preserved archaeological fish bone. We surveyed samples from lakes and rivers in varying geological settings in Britain and Ireland. Modern fish bone and water samples were analysed to investigate modern radiocarbon offsets from the atmosphere. Archaeological fish bone was also analysed to examine past reservoir offsets at selected sites. Stable carbon and nitrogen isotope values were measured to aid in interpretation of any variability in the offsets. Large freshwater reservoir offsets were measured in some modern and archaeological samples (maximum offset = 1638 14C years). The freshwater reservoir offsets in the fish bone were highly correlated with alkalinity of water in modern lake sites analysed. However, a high amount of variation within and between fish species was also evident in the results, precluding the possibility of providing regional corrections for freshwater reservoir offsets from alkalinity although this still may provide a general guideline. The variability is thought to be due to differences in the diet of individual fish.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The North Atlantic has played a key role in abrupt climate changes due to the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to the location and strength of deep water formation. It is crucial for modelling future climate change to understand the role of the AMOC in the rapid warming and gradual cooling cycles known as Dansgaard-Oescher (DO) events which are recorded in the Greenland ice cores. However, palaeoceanographic research into DO events has been hampered by the uncertainty in timing due largely to the lack of a precise chronological time frame for marine records. While tephrochronology provides links to the Greenland ice core records at a few points, radiocarbon remains the primary dating method for most marine cores. Due to variations in the atmospheric and oceanic 14C concentration, radiocarbon ages must be calibrated to provide calendric ages. The IntCal Working Group provides a global estimate of ocean 14C ages for calibration of marine radiocarbon dates, but the variability of the surface marine reservoir age in the North Atlantic particularly during Heinrich or DO events, makes calibration uncertain. In addition, the current Marine09 radiocarbon calibration beyond around 15 ka BP is largely based on 'tuning' to the Hulu Cave isotope record, so that the timing of events may not be entirely synchronous with the Greenland ice cores. The use of event-stratigraphy and independent chronological markers such as tephra provide the scope to improve marine radiocarbon reservoir age estimates particularly in the North Atlantic where a number of tephra horizons have been identified in both marine sediments and the Greenland ice cores. Quantification of timescale uncertainties is critical but statistical techniques which can take into account the differential dating between events can improve the precision. Such techniques should make it possible to develop specific marine calibration curves for selected regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neptune’s Cave in the Velfjord–Tosenfjord area of Nordland, Norway is described, together with its various organic deposits. Samples of attached barnacles, loose marine molluscs, animal bones and organic sediments were dated, with radiocarbon ages of 9840+/-90 and 9570+/-80 yr BP being derived for the barnacles and molluscs, based on the superseded but locally used marine reservoir age of 440 years. A growth temperature of c. 7.51C in undiluted seawater is deduced from the d13C and d18O values of both types of marine shell, which is consistent with their early Holocene age. From the dates, and an assessment of local Holocene uplift and Weichselian deglaciation, a scenario is constructed that could explain the situation and condition of the various deposits. The analysis uses assumed local isobases and sea-level curve to give results: that are consistent with previous data, that equate the demise of the barnacles to the collapse of a tidewater glacier in Tosenfjord, and that constrain the minimum extent of local Holocene uplift. An elk fell into the cave in the mid-Holocene at 510070 yr BP, after which a much later single ‘bog-burst’ event at 178070 yr BP could explain the transport of the various loose deposits further into the cave.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Kawakawa/Oruanui tephra (KOT) is a key chronostratigraphic marker in terrestrial and marine deposits of the New Zealand (NZ) sector of the southwest Pacific. Erupted early during the Last Glacial Maximum (LGM), the wide distribution of the KOT enables inter-regional alignment of proxy records and facilitates comparison between NZ climatic variations and those from well-dated records elsewhere. We present 22 new radiocarbon ages for the KOT from sites and materials considered optimal for dating, and apply Bayesian statistical methods via OxCal4.1.7 that incorporate stratigraphic information to develop a new age probability model for KOT. The revised calibrated age, ±2 standard deviations, for the eruption of the KOT is 25,360 ± 160 cal yr BP. The age revision provides a basis for refining marine reservoir ages for the LGM in the southwest Pacific.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous work has suggested that seasonal and inter-annual upwelling of deep, cold, radiocarbon depleted waters from the South Atlantic has caused variations in the reservoir effect (R) through time along the southern coast of Brazil. This work aims to examine the possible upwelling influence on the paleo-reservoir age of Brazilian surficial coastal waters based on paired terrestrial/marine samples obtained from archaeological remains. On the Brazilian coast there are hundreds of shell-middens built up by an ancient culture that lived between 6500 to 1500 years ago, but there are few located on open coast with a known upwelling influence. Three archaeological sites located in a large headland in Arraial do Cabo and Ilha de Cabo Frio, southeastern coast of Brazil with open ocean conditions and a well-known strong and large upwelling of the Malvinas/Falkland current were chosen for this study. The 14C age differences between carbonized seed and marine samples varied from 281 ± 44 to 1083 ± 51 14C yr. There are also significant age differences between carbonized seed samples (977 14C yr) and marine samples (200 and 228 14C yr) from the same archaeological layer that cannot be explained by a reservoir effect or an old-wood effect for charcoal. Therefore the present data from the southeastern Brazilian coast are inconclusive for identifying an upwelling effect on R. To do so it would be necessary to more precisely define the present-pre-bomb R in upwelling regions and to analyze paired marine/terrestrial samples that are contemporaneous beyond doubt.