8 resultados para Mammary gland development

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Transforming Growth Factor-beta (TGFbeta) superfamily of cytokines is comprised of a number of structurally-related, secreted polypeptides that regulate a multitude of cellular processes including proliferation, differentiation and neoplastic transformation. These growth regulatory molecules induce ligand-mediated hetero-oligomerization of distinct type II and type I serine/threonine kinase receptors that transmit signals predominantly through receptor-activated Smad proteins but also induce Smad-independent pathways. Ligands, receptors and intracellular mediators of signaling initiated by members of the TGFbeta family are expressed in the mammary gland and disruption of these pathways may contribute to the development and progression of human breast cancer. Since many facets of TGFbeta and breast cancer have been recently reviewed in several articles, except for discussion of recent developments on some aspects of TGFbeta, the major focus of this review will be on the role of activins, inhibins, BMPs, nodal and MIS-signaling in breast cancer with emphasis on their utility as potential diagnostic, prognostic and therapeutic targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disruption of glandular architecture associates with poor clinical outcome in high-grade colorectal cancer (CRC). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) regulates morphogenic growth of benign MDCK (Madin Darby Canine Kidney) cells through effects on the Rho-like GTPase cdc42 (cell division cycle 42). This study investigates PTEN-dependent morphogenesis in a CRC model. Stable short hairpin RNA knockdown of PTEN in Caco-2 cells influenced expression or localization of cdc42 guanine nucleotide exchange factors and inhibited cdc42 activation. Parental Caco-2 cells formed regular hollow gland-like structures (glands) with a single central lumen, in three-dimensional (3D) cultures. Conversely, PTEN-deficient Caco-2 ShPTEN cells formed irregular glands with multiple abnormal lumens as well as intra- and/or intercellular vacuoles evocative of the high-grade CRC phenotype. Effects of targeted treatment were investigated. Phosphatidinylinositol 3-kinase (PI3K) modulating treatment did not affect gland morphogenesis but did influence gland number, gland size and/or cell size within glands. As PTEN may be regulated by the nuclear receptor peroxisome proliferator-activated receptor-? (PPAR?), cultures were treated with the PPAR? ligand rosiglitazone. This treatment enhanced PTEN expression, cdc42 activation and rescued dysmorphogenesis by restoring single lumen formation in Caco-2 ShPTEN glands. Rosiglitazone effects on cdc42 activation and Caco-2 ShPTEN gland development were attenuated by cotreatment with GW9662, a PPAR? antagonist. Taken together, these studies show PTEN-cdc42 regulation of lumen formation in a 3D model of human CRC glandular morphogenesis. Treatment by the PPAR? ligand rosiglitazone, but not PI3K modulators, rescued colorectal glandular dysmorphogenesis of PTEN deficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emerging evidence demonstrates that RUNX3 is a tumor suppressor in breast cancer. Inactivation of RUNX3 in mice results in spontaneous mammary gland tumors, and decreased or silenced expression of RUNX3 is frequently found in breast cancer cell lines and human breast cancer samples. However, the underlying mechanism for initiating RUNX3 inactivation in breast cancer remains elusive. Here, we identify prolyl isomerase Pin1, which is often overexpressed in breast cancer, as a key regulator of RUNX3 inactivation. In human breast cancer cell lines and breast cancer samples, expression of Pin1 inversely correlates with the expression of RUNX3. In addition, Pin1 recognizes four phosphorylated Ser/Thr-Pro motifs in RUNX3 via its WW domain. Binding of Pin1 to RUNX3 suppresses the transcriptional activity of RUNX3. Furthermore, Pin1 reduces the cellular levels of RUNX3 in an isomerase activity-dependent manner by inducing the ubiquitination and proteasomal degradation of RUNX3. Knocking down Pin1 enhances the cellular levels and transcriptional activity of RUNX3 by inhibiting the ubiquitination and degradation of RUNX3. Our results identify Pin1 as a new regulator of RUNX3 inactivation in breast cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ideal cancer chemotherapeutic prodrug is completely inactive until metabolized by a tumour-specific enzyme, or by an enzyme that is only metabolically competent towards the prodrug under physiological conditions unique to the tumour. Human cancers, including colon, breast, lung, liver, kidney and prostate, are known to express cytochrome P450 (CYP) isoforms including 3A and 1A subfamily members. This raises the possibility that tumour CYP isoforms could be a focus for tumour-specific prodrug activation. Several approaches are reviewed, including identification of prodrugs activated by tumour-specific polymorphic CYPs, use of CYP-gene directed enzyme prodrug therapy and CYPs acting as reductases in hypoxic tumour regions. The last approach is best exemplified by AQ4N, a chemotherapeutic prodrug that is bioreductively activated by CYP3A. This study shows that freshly isolated murine T50/80 mammary carcinoma and RIF-1 fibrosarcoma 4-electron reduces AQ4N to its cytotoxic metabolite, AQ4 (T50/80 K-m = 26.7 mu M, V-max = 0.43 mu M/mg protein/min; RIF-1 K-m = 33.5 mu M, V-max = 0.42 mu M/mg protein/min) via AQM, a mono-N-oxide intermediate (T50/80 K-m = 37.5 mu M; V-max = 1.4 mu M/mg protein/min; RIF-1 K-m = 37.5 mu M; V-max = 1.2 mu M/mg protein/min). The prodrug conversion was dependent on NADPH and inhibited by air or carbon monoxide. Cyp3A mRNA and protein were both present in T50/80 carcinoma grown in vivo (RIF-1 not measured). Exposure of isolated tumour cells to anoxia (2 h) immediately after tumour excision increased cyp3A protein 2-3-fold over a 12 h period, after which time the cyp protein levels returned to the level found under aerobic conditions. Conversely, cyp3A mRNA expression showed an initial 3-fold decrease under both oxic and anoxic conditions; this returned to near basal levels after 8-24 h. These results suggest that cyp3A protein is stabilized in the absence of air, despite a decrease in cyp3A mRNA. Such a 'stabilization factor' may decrease cyp3A protein turnover without affecting the translation efficiency of cyp3A mRNA. Confirmation of the CYP activation of AQ4N bioreduction was shown with human lymphoblastoid cell microsomes transfected with CYP3A4, but not those transfected with CYP2B6 or cytochrome P450 reductase. AQ4N is also reduced to AQ4 in NADPH-fortified human renal cell carcinoma (K-m = 4 mu M, V-max = 3.5 pmol/mg protein/min) and normal kidney (K-m = 4 mu M, V-max = 4.0 pmol/mg protein/min), both previously shown to express CYP3A. Germane to the clinical potential of AQ4N is that although both normal and tumour cells are capable of reducing AQ4N to its cytotoxic species, the process requires low oxygen conditions. Hence, AQ4N metabolism should be restricted to hypoxic tumour cells. The isoform selectivity of AQ4N reduction, in addition to its air sensitivity, indicates that AQ4N haem coordination and subsequent oxygen atom transfer from the active-site-bound AQ4N is the likely mechanism of N-oxide reduction. The apparent increase in CYP3A expression under hypoxia makes this a particularly interesting application of CYPs for tumour-specific prodrug activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.