32 resultados para Macurdy, Elisha, 1763-1845.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The perception of Ireland and India as ‘zones of famine’ led many nineteenth-century observers to draw analogies between these two troublesome parts of the British empire. This article investigates this parallel through the career of James Caird (1816–92), and specifically his interventions in the latter stages of both the Great Irish Famine of 1845–50, and the Indian famines of 1876–9. Caird is best remembered as the joint author of the controversial dissenting minute in the Indian famine commission report of 1880; this article locates the roots of his stance in his previous engagements with Irish policy. Caird's interventions are used to track the trajectory of an evolving ‘Peelite’ position on famine relief, agricultural reconstruction, and land reform between the 1840s and 1880s. Despite some divergences, strong continuities exist between the two interventions – not least concern for the promotion of agricultural entrepreneurship, for actively assisting economic development in ‘backward’ economies, and an acknowledgement of state responsibility for preserving life as an end in itself. Above all in both cases it involved a critique of a laissez-faire dogmatism – whether manifest in the ‘Trevelyanism’ of 1846–50 or the Lytton–Temple system of 1876–9.
Resumo:
While historians once tended to displace the Famine from a pivotal position in modern Irish history, more recent research emphasizes its centrality, and focuses upon the controversial issue of state responsibility. Mortality levels from the Famine place it, proportionately, as one of the most devastating recorded human catastrophes. Official British policy towards Ireland spanned two governments, those of Robert Peel and John Russell, with historians taking a more emollient view of the former: in fact there were significant continuities between the two. The legacy of the Famine was uneven, with commercial and technological advance and the consolidation of both the farming interest and landlordism. On the other hand, recent research emphasizes evidence of continuing economic uncertainty, particularly in the West, together with ongoing landlord-tenant tensions. Rural insecurities, crystallized by the poor harvests of 185964, underlay the post-Famine years, and fed into the politicization of the later 1870s.
Resumo:
Aims: X-ray emission is an important diagnostics to study magnetic activity in very low mass stars that are presumably fully convective and have an effectively neutral photosphere. Methods: We investigate an XMM-Newton observation of SCR 1845-6357, a nearby, ultracool M 8.5 / T 5.5 dwarf binary. The binary is unresolved in the XMM detectors, but the X-ray emission is very likely from the M 8.5 dwarf. We compare its flaring emission to those of similar very low mass stars and additionally present an XMM observation of the M 8 dwarf VB 10. Results: We detect quasi-quiescent X-ray emission from SCR 1845-6357 at soft X-ray energies in the 0.2-2.0 keV band, as well as a strong flare with a count rate increase of a factor of 30 and a duration of only 10 min. The quasi-quiescent X-ray luminosity of log LX = 26.2 erg/s and the corresponding activity level of log LX/Lbol = -3.8 point to a fairly active star. Coronal temperatures of up to 5 MK and frequent minor variability support this picture. During the flare, which is accompanied by a significant brightening in the near-UV, plasma temperatures of 25-30 MK are observed and an X-ray luminosity of LX = 8 × 1027 erg/s is reached. Conclusions: The source SCR 1845-6357 is a nearby, very low mass star that emits X-rays at detectable levels in quasi-quiescence, implying the existence of a corona. The high activity level, coronal temperatures and the observed large flare point to a rather active star, despite its estimated age of a few Gyr.
Resumo:
A full understanding of the biogeochemical cycling of silica in the North Atlantic is hampered by a lack of estimates of silica uptake by phytoplankton. We applied the ${}^{32}\text{Si}$ radiotracer incubation technique to determine silica uptake rates at 10 sites during the UK-(Natural Environment Research Council) Faroes-Iceland-Scotland hydrographic and environmental survey (FISHES) cruise in the Northeast Atlantic, May 2001. Column silica uptake rates ranged between 6 and 166 mmol Si $\text{m}^{-2}\ \text{d}^{-1}$; this data set was integrated with concurrent hydrographic, chemical, and primary productivity data to explain these changes in silica uptake in terms of the progress of the spring bloom. In order to interpret data covering a relatively large spatial and temporal scale, we used mean photic zone silica concentration as a proxy time-series measure of diatom bloom progression. Both absolute and specific silica uptake rates were highest at dissolved silica concentrations >2 mmol $\text{L}^{-1}$. Si and C uptake were vertically decoupled at those stations where surface silica was strongly depleted. Absolute primary productivity was not strongly correlated with dissolved silica concentrations, owing to either exhaustion of silica at diatom-dominated stations or to dominance of the community by other phytoplankton. Silica uptake as a function of increased substrate concentration was linear up to 25 $\mu \text{mol}\ \text{L}^{-1}$; we consider some possible reasons for the nonhyperbolic response.
Resumo:
A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.