1 resultado para Macro simulation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
BACKGROUND: For many, physical activity has been engineered out of daily life, leading to high levels of sedentariness and obesity. Multi-faceted physical activity interventions, combining individual, community and environmental approaches, have the greatest potential to improve public health, but few have been evaluated. METHODS: Approximately 100 000 people may benefit from improved opportunities for physical activity through an urban regeneration project in Northern Ireland, the Connswater Community Greenway. Using the macro-simulation PREVENT model, we estimated its potential health impacts and cost-effectiveness. To do so, we modelled its potential impact on the burden from cardiovascular disease, namely, ischaemic heart disease, type 2 diabetes mellitus and stroke, and colon and breast cancer, by the year 2050, if feasible increases in physical activity were to be achieved. RESULTS: If 10% of those classified as 'inactive' (perform less than 150 minutes of moderate activity/week) became 'active', 886 incident cases (1.2%) and 75 deaths (0.9%) could be prevented with an incremental cost-effectiveness ratio of £4469/disability-adjusted life year. For effectiveness estimates as low as 2%, the intervention would remain cost-effective (£18 411/disability-adjusted life year). Small gains in average life expectancy and disability-adjusted life expectancy could be achieved, and the Greenway population would benefit from 46 less years lived with disability. CONCLUSION: The Greenway intervention could be cost-effective at improving physical activity levels. Although the direct health gains are predicted to be small for any individual, summed over an entire population, they are substantial. In addition, the Greenway is likely to have much wider benefits beyond health.