10 resultados para MOLECULAR SWITCHES

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular switches are ubiquitous in Nature and provide the basis of many forms of transport and signalling. Single synthetic molecules that change conformation, and thus function, reversibly in a stimulus-dependent manner are of great interest not only to chemists but society in general; myriad applications exist in storage, display, sensing and medicine. Here we describe recent developments in the area of ion-mediated switching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation of a number of class A G protein-coupled receptors (GPCRs) is thought to involve two molecular switches, a rotamer toggle switch within the transmembrane domain and an ionic lock at the cytoplasmic surface of the receptor; however, the mechanism by which agonist binding changes these molecular interactions is not understood. Importantly, 80% of GPCRs including free fatty acid receptor 1 (FFAR1) lack the complement of amino acid residues implicated in either or both of these two switches; the mechanism of activation of these GPCRs is therefore less clear. By homology modeling, we identified two Glu residues (Glu-145 and Glu-172) in the second extracellular loop of FFAR1 that form putative interactions individually with two transmembrane Arg residues (Arg-183(5.39) and Arg-258(7.35)) to create two ionic locks. Molecular dynamics simulations showed that binding of agonists to FFAR1 leads to breakage of these Glu-Arg interactions. In mutagenesis experiments, breakage of these two putative interactions by substituting Ala for Glu-145 and Glu-172 caused constitutive receptor activation. Our results therefore reveal a molecular switch for receptor activation present on the extracellular surface of FFAR1 that is broken by agonist binding. Similar ionic locks between the transmembrane domains and the extracellular loops may constitute a mechanism common to other class A GPCRs also.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Letter describes the hit-to-lead progression and SAR of a series of biphenyl acetylene compounds derived from an HTS screening campaign targeting the mGlu(5) receptor. 'Molecular switches' were identified that modulated modes of pharmacology, and several compounds within this series were shown to be efficacious in reversal of amphetamine induced hyperlocomotion in rats after ip dosing, a preclinical model that shows similar positive effects with known antipsychotic agents. Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fluorophore-spacer1-receptor1-spacer2-receptor2 system (where receptor2 alone is photoredox-inactive) shows ionically tunable proton-induced fluorescence off-on switching, which is reminiscent of thermionic triode behavior. This also represents a new extension to modular switch systems based on photoinduced electron transfer (PET) towards the emulation of analogue electronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthracene-based, H+-driven, ‘off–on–off’ fluorescent PET (photoinduced electron transfer) switches are immobilized on organic and inorganic polymeric solids in the form of Tentagel® and silica, respectively. The environment of the organic bead displaces apparent switching thresholds towards lower pH values whereas the Si–O- groups of silica electrostatically cause the opposite effect. These switches are ternary logic gate tags, one of which can be particularly useful in strengthening molecular computational identification (MCID) of small solid objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following a brief introduction to the principle of fluorescent PET (photoinduced electron transfer) sensors and switches, the outputs of laboratories in various countries from the past year or two are categorized and critically discussed. Emphasis is placed on the molecular design and the experimental outcomes in terms of target-induced fluorescence enhancements and input/output wavelengths. The handling of single targets takes up a major fraction of the review, but the extension to multiple targets is also illustrated. Conceptually new channels of investigation are opened up by the latter approach, e.g. ‘lab-on-a-molecule’ systems and molecular keypad locks. The growing trends of theoretically-fortified design and intracellular application are pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A personal account of the establishment of luminescent PET (photoinduced electron transfer) sensing and its development into molecular logic is given. Several applications of these two research areas, e.g. blood electrolyte diagnostics, ‘lab-on-amolecule’ systems and molecular computational identification (MCID) are illustrated.