5 resultados para MECHANICAL EFFICIENCY
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The geometry of tree branches can have considerable effect on their efficiency in terms of carbon export per unit carbon investment in structure. The purpose of this study was to evaluate different design criteria using data describing the form of Picea sitchensis branches. Allometric analysis of the data suggests that resources are distributed to favour shoots with the greatest opportunity for extension into new space, with priority to the extension of the leader. The distribution of allometric relations of links (branch elements) was tested against two models: the pipe model, based on hydraulic transport requirements, and a static load model based on the requirement of shoots to provide mechanical resistance to static loads. Static load resistance required the load parameter to be proportional to the link radius raised to the power of 4. This was shown to be true within a 95% statistical confidence limit. The pipe model would require total distal length to be proportional to link radius squared but the measured branches did not conform well to this model. The comparison suggests that the diameters of branch elements were more related to the requirements for mechanical load. The cost of following a hydraulic design principle (the pipe model) in terms of mechanical efficiency was estimated and suggested that the pipe model branch would not be mechanically compromised but would use structural resources inefficiently. Resource allocation among branch elements was found to be consistent with mechanical stability criteria but also indicated the possibility of allocation based on other criteria, such as potential light interception by shoots. The evidence suggests that whilst branch topology increments by reiteration of units of morphogenesis, the geometry follows a functional design pattern.
Resumo:
We consider the distribution of entanglement from a multimode optical driving source to a network of remote and independent optomechanical systems. By focusing on the tripartite case, we analyse the effects that the features of the optical input states have on the degree and sharing structure of the distributed, fully mechanical, entanglement. This study, which is conducted looking at the mechanical steady state, highlights the structure of the entanglement distributed among the nodes and determines the relative efficiency between bipartite and tripartite entanglement transfer. We discuss a few open points, some of which are directed towards the bypassing of such limitations.
Resumo:
Composites with a weak interface between the filler and matrix which are susceptible to interfacial crack formation are studied. A finite-element model is developed to predict the stres/strain behavior of particulate composites with an interfacial crack. This condition can be distinguished as a partially bonded inclusion. Another case arises when there is no bonding between the inclusion and the matrix. In this latter case the slip boundary condition is imposed on the section of the interface which remains closed. The states of stress and displacement fields are obtained for both cases. The location of any further deformation through crazing or shear band formation is identified as the crack tip. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the crack tip. Whereas this might lead to slightly higher strength, it decreases the load-transfer efficiency and stiffness of this type of composite. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the background rationale and key findings for a model-based study of supercritical waste heat recovery organic Rankine cycles. The paper’s objective is to cover the necessary groundwork to facilitate the future operation of a thermodynamic organic Rankine cycle model under realistic thermodynamic boundary conditions for performance optimisation of organic Rankine cycles. This involves determining the type of power cycle for organic Rankine cycles, the circuit configuration and suitable boundary conditions. The study focuses on multiple heat sources from vehicles but the findings are generally applicable, with careful consideration, to any waste heat recovery system. This paper introduces waste heat recovery and discusses the general merits of organic fluids versus water and supercritical operation versus subcritical operation from a theoretical perspective and, where possible, from a practical perspective. The benefits of regeneration are investigated from an efficiency perspective for selected subcritical and supercritical conditions. A simulation model is described with an introduction to some general Rankine cycle boundary conditions. The paper describes the analysis of real hybrid vehicle data from several driving cycles and its manipulation to represent the thermal inertia for model heat input boundary conditions. Basic theory suggests that selecting the operating pressures and temperatures to maximise the Rankine cycle performance is relatively straightforward. However, it was found that this may not be the case for an organic Rankine cycle operating in a vehicle. When operating in a driving cycle, the available heat and its quality can vary with the power output and between heat sources. For example, the available coolant heat does not vary much with the load, whereas the quantity and quality of the exhaust heat varies considerably. The key objective for operation in the vehicle is optimum utilisation of the available heat by delivering the maximum work out. The fluid selection process and the presentation and analysis of the final results of the simulation work on organic Rankine cycles are the subjects of two future publications.
Resumo:
Traditionally, the optimization of a turbomachinery engine casing for tip clearance has involved either twodimensional transient thermomechanical simulations or three-dimensional mechanical simulations. This paper illustrates that three-dimensional transient whole-engine thermomechanical simulations can be used within tip clearance optimizations and that the efficiency of such optimizations can be improved when a multifidelity surrogate modeling approach is employed. These simulations are employed in conjunction with a rotor suboptimization using surrogate models of rotor-dynamics performance, stress, mass and transient displacements, and an engine parameterization.