230 resultados para Lung Tuberculosis
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Leukocyte-derived matrix metalloproteinases (MMP) are implicated in the tissue destruction characteristic of tuberculosis (TB). The contribution of lung stromal cells to MMP activity in TB is unknown. Oncostatin M (OSM) is an important stimulus to extrapulmonary stromal MMP induction, but its role in regulation of pulmonary MMP secretion or pathophysiology of TB is unknown. We investigated OSM secretion from Mycobacterium tuberculosis (Mtb)-infected human monocytes/macrophages and the networking effects of such OSM on lung fibroblast MMP secretion. Mtb increased monocyte OSM secretion dose dependently in vitro. In vivo tuberculous granulomas immunostained positively for OSM. Further, conditioned media from Mtb-infected monocytes (CoMTb) induced monocyte OSM secretion (670 ± 55 versus 166 ± 14 pg/mL in controls), implicating an autocrine loop. Mtb-induced OSM secretion was prostaglandin (PG) sensitive, and required activation of surface G-protein coupled receptors. OSM induction was ERK MAP kinase dependent, p38-requiring but JNK-independent. OSM synergized with TNF-, a key cytokine in TB granuloma formation, to stimulate pulmonary fibroblast MMP-1/-3 secretion, while suppressing secretion of tissue inhibitors of metalloproteinases-1/-2. In summary, Mtb infection of monocytes results in PG-dependent OSM secretion, which synergizes with TNF- to drive functionally unopposed fibroblast MMP-1/-3 secretion, demonstrating a previously unrecognized role for OSM in TB.
Resumo:
Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.
Resumo:
Background: A novel lateral flow, immunochromatographic assay (LFD) specific for Mycobacterium bovis, the cause of bovine tuberculosis and zoonotic TB, was recently developed at Queen’s University Belfast. The LFD detects whole M. bovis cells, in contrast to other commercially available LFD tests (BD MGITTM TBc ID, SD Bioline TB Ag MPT 64, Capilia TB-Neo kit) which detect MPT64 antigen secreted during growth. The new LFD test has been evaluated in the veterinary context, and its specificity for M. bovis in the broadest sense (i.e. subsp. bovis, subsp. caprae and BCG) and sensitivity to detect M. bovis in positive MGIT™ liquid cultures was demonstrated comprehensively.
Methods: Preliminary work was carried out by researchers at Queen’s University Belfast to optimise sputum sample preparation, estimate the limit of detection (LOD) of the LFD with M. bovis-spiked sputum samples, and check LFD specificity by testing a broad range of non-tuberculous Mycobacterium spp. (NTM) and other bacterial genera commonly encountered in sputum samples (Haemophilus, Klebsiella, Pseudomonas, Staphylococcus). In the Cameroon laboratory direct detection of M. bovis in human sputa was attempted, and 50 positive sputum MGIT™ cultures and 33 cultures of various Mycobacterium spp. originally isolated from human sputa were tested.
Results: Sputum sample preparation consisted of digestion with 1% NALC for 30 min, centrifugation at 3000g for 20 min, PBS wash, centrifugation again, and pellet resuspended in KPL blocking buffer before 100 µl was applied to the LFD. The LOD of the LFD applied to M. bovis-spiked sputum was estimated to be 104 CFU/ml. A small number of confirmed Ziehl-Neelsen ‘3+’ M. bovis positive sputum samples were tested directly but no positive LFD results were obtained. All of the sputum MGIT™ cultures and mycobacterial cultures (including M. tuberculosis, M. africanum, M. bovis, M. intracellulare, M. scrofulaceum, M. fortuitum, M. peregrinum, M. interjectum) tested LFD negative when read after 15 min except for the M. bovis cultures, thereby confirming specificity of LFD for M. bovis in the clinical microbiology context.
Conclusions: Results indicate that the ‘Rapid-bTB’ LFD is a very specific test, able to differentiate M. bovis from M. tuberculosis, M. africanum, and a range of NTM isolated from human sputa in MGITTM liquid cultures. However, the LFD lacks sufficient sensitivity to be applied earlier in the diagnostic process to directly test human sputa.
Resumo:
There is evidence that oxidative stress plays a role in the development of chronic lung disease (CLD), with immature lungs being particularly sensitive to the injurious effect of oxygen and mechanical ventilation. We analyzed total ascorbate, urate, and protein carbonyls in 102 bronchoalveolar lavage fluid samples from 38 babies (33 preterm, 24–36 wk gestation; 5 term, 37–39 wk gestation). Preterm babies had significantly decreasing concentrations of ascorbate, urate, and protein carbonyls during the first 9 days of life (days 1–3, 4–6, and 7–9, Kruskal-Wallis ANOVA: P 5 0.016, P , 0.0001, and P 5 0.010, respectively). Preterm babies had significantly higher protein carbonyl concentrations at days 1–3 and 4–6 (P 5 0.005 and P 5 0.044) compared with term babies. Very preterm babies (24–28 wk gestation) had increased concentrations of protein carbonyls at days 4–6 (P 5 0.056) and significantly decreased ascorbate concentrations at days 4–6 (P 5 0.004) compared with preterm babies (29–36 wk gestation). Urate concentrations were significantly elevated at days 1–3 (P 5 0.023) in preterm babies who subsequently developed CLD. This study has shown the presence of oxidative stress in the lungs of preterm babies during ventilation, especially in those who subsequently developed CLD.