4 resultados para Long lifetime
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Quiet-Sun oscillations in the four Transition Region and Coronal Explorer (TRACE) ultraviolet passbands centered on 1700, 1600, 1216, and 1550 Angstrom are studied using a wavelet-based technique. Both network and internetwork regions show oscillations with a variety of periods and lifetimes in all passbands. The most frequent network oscillation has a period of 283 s, with a lifetime of 2-3 cycles in all passbands. These oscillations are discussed in terms of upwardly propagating magnetohydrodynamic wave models. The most frequent internetwork oscillation has a period of 252 s, again with a lifetime of 2-3 cycles, in all passbands. The tendency for these oscillations to recur in the same position is discussed in terms of "persistent flashers." The network contains greater oscillatory power than the internetwork at periods longer than 300 s in the low chromosphere. This value is shown to decrease to 250 s in the high chromosphere. The internetwork also displays a larger number of short-lifetime, long-period oscillations than the network, especially in the low chromosphere. Both network and internetwork regions contain a small number of nonrecurring long-lifetime oscillations.
Resumo:
Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate ( dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense D-5(0) -> F-7(2) transition ( up to 15 times more intense than the D-5(0) -> F-7(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the D-5(0) excited state (1.8 ms).
Resumo:
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p <0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p <0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p <0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p <0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.
Resumo:
ABSTRACT: Older people who are caring for their adult sons and daughters with disabilities are under tremendous stress because they may suffer health problems themselves; have financial problems due a lifetime of caring; may have to care on their own due to the death of their spouse; worry about the future care of their child; and may feel uncomfortable approaching professionals for help. Professionals working with these families need to take contextual pressures into consideration when planning intervention. Twenty-nine parents of 27 adults with intellectual and/or developmental disabilities (including autism) were asked about present care and service arrangements, health issues, family support, and “futures planning.” The research reported here identifies complex networks of relationships. Virtual absence of structured futures planning was one of the key issues. Recommendations are made for professionals working in this field.