15 resultados para Locks (Hydraulic engineering)
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Seepage flow under hydraulic structures provided with intermediate filters has been investigated. The flow through the banks of the canal has been included in the model. Different combinations of intermediate filter and canal width were studied. Different lengths of the floor, differential heads, and depths of the sheet pile driven beneath the floor were also investigated. The introduction of an intermediate filter to the floor of hydraulic structures reduced the uplift force acting on the downstream floor by up to 72%. The maximum uplift reduction occurred when the ratio of the distance of filter location downstream from the cutoff to the differential head was 1. Introducing a second filter in the downstream side resulted in a further reduction in the exit hydraulic gradient and in the uplift force, which reached 90%. The optimum locations of the two filters occurred when the first filter was placed just downstream of the cutoff wall and the second filter was placed nearly at the middistance between the cutoff and the end toe of the floor. The results showed significant differences between the three-dimensional (3D) and the two-dimensional (2D) analyses.
Flow due to multiple jets downstream of a barrage: Experiments, 3-D CFD and depth-averaged modelling
Resumo:
The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiments in a wide flume, a three-dimensional (3D) computational fluid dynamics simulation, and a two-dimensional depth-averaged computation. Agreement between the experiments and the 3D modeling is shown to be good, including the prediction of an asymmetric Coandă effect. One aim is to determine the distance downstream at which depth-averaged modeling provides a reasonable prediction; this is shown to be approximately 20 tube diameters downstream of the barrage. Upstream of this, the depth-averaged modeling inaccurately predicts water level, bed shear, and the 3D flow field. The 3D model shows that bed shear stress can be markedly magnified near the barrage, particularly where the jets become attached.
Resumo:
This paper investigates the problem of seepage under the floor of hydraulic structures considering the compartment of flow that seeps through the surrounding banks of the canal. A computer program, utilizing a finite-element method and capable of handling three-dimensional (3D) saturated–unsaturated flow problems, was used. Different ratios of canal width/differential head applied on the structure were studied. The results produced from the two-dimensional (2D) analysis were observed to deviate largely from that obtained from 3D analysis of the same problem, despite the fact that the porous medium was isotropic and homogeneous. For example, the exit gradient obtained from 3D analysis was as high as 2.5 times its value obtained from 2D analysis. Uplift force acting upwards on the structure has also increased by about 46% compared with its value obtained from the 2D solution. When the canal width/ differential head ratio was 10 or higher, the 3D results were comparable to the 2D results. It is recommended to construct a core of low permeability soil in the banks of canal to reduce the seepage losses, uplift force, and exit gradient.
Resumo:
This research investigated seepage under hydraulic structures considering flow through the banks of the canal. A computer model, utilizing the finite element method, was used. Different configurations of sheetpile driven under the floor of the structure were studied. Results showed that the transverse extension of sheetpile, driven at the middle of the floor, into the banks of the canal had very little effect on seepage losses, uplift force, and on the exit gradient at the downstream end of the floor. Likewise, confining the downstream floor with sheetpile from three sides was not found effective. When the downstream floor was confined with sheetpile from all sides, this has significantly reduced the exit gradient. Furthermore, all the different configurations of the sheetpile had insignificant effect on seepage losses. The most effective configuration of the sheetpile was the case when two rows of sheetpiles were driven at the middle and at the downstream end of the floor, with the latter sheetpile extended few meters into the banks of the canal. This case has significantly reduced the exit gradient and caused only slight increase in the uplift force when compared to other sheetpile configurations. The present study suggests that two-dimensional analysis of seepage problems underestimates the exit gradient and uplift force on hydraulic structures.
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Stochastic Analysis of Seepage under Hydraulic Structures Resting on Anisotropic Heterogeneous Soils
Resumo:
The characteristics of hydraulic jumps were investigated for three shapes of artificial apparent corrugated beds in a horizontal rectangular flume. Rectangular, triangular, and circular-shaped tire waste corrugated beds were used. Froude number ranged from 2.75 to 4.25. The experimental observations included water surface profiles, bed shear stress, and the hydraulic jump length. Results showed that the shape of the corrugation had relatively insignificant effects on hydraulic jump properties for small Froude numbers. The rectangular, triangular, and circular-shaped corrugated beds reduced the hydraulic jump length by up to 7, 10, and 11%, respectively. The corrugated bed also reduced the tailwater depth by up to 11.5% compared with the smooth bed. The apparent conditions of corrugated bed reduced the hydraulic jump relative length and height by about 0.4 and 0.5, respectively. The circular-shaped tire waste was found to be more effective in reducing the length and depth of the hydraulic jump.