37 resultados para Lobau, Mouton, comte de

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In small islands, a freshwater lens can develop due to the recharge induced by rain. Magnitude and spatial distribution of this recharge control the elevation of freshwater and the depth of its interface with salt water. Therefore, the study of lens morphology gives useful information on both the recharge and water uptake due to evapotranspiration by vegetation. Electrical resistivity tomography was applied on a small coral reef island, giving relevant information on the lens structure. Variable density groundwater flow models were then applied to simulate freshwater behavior. Cross validation of the geoelectrical model and the groundwater model showed that recharge exceeds water uptake in dunes with little vegetation, allowing the lens to develop. Conversely, in the low-lying and densely vegetated sectors, where water uptake exceeds recharge, the lens cannot develop and seawater intrusion occurs. This combined modeling method constitutes an original approach to evaluate effective groundwater recharge in such environments.
[Comte, J.-C., O. Banton, J.-L. Join, and G. Cabioch (2010), Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads, Water Resour. Res., 46, W06601, doi:10.1029/2009WR008058.]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The validation of variable-density flow models simulating seawater intrusion in coastal aquifers requires information about concentration distribution in groundwater. Electrical resistivity tomography (ERT) provides relevant data for this purpose. However, inverse modeling is not accurate because of the non-uniqueness of solutions. Such difficulties in evaluating seawater intrusion can be overcome by coupling geophysical data and groundwater modeling. First, the resistivity distribution obtained by inverse geo-electrical modeling is established. Second, a 3-D variable-density flow hydrogeological model is developed. Third, using Archie's Law, the electrical resistivity model deduced from salt concentration is compared to the formerly interpreted electrical model. Finally, aside from that usual comparison-validation, the theoretical geophysical response of concentrations simulated with the groundwater model can be compared to field-measured resistivity data. This constitutes a cross-validation of both the inverse geo-electrical model and the groundwater model.
[Comte, J.-C., and O. Banton (2007), Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402, doi:10.1029/2007GL029981.]

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated groundwater salinity as a key element in both the short and long-term evolution of the island of Grande Glorieuse. Firstly, we demonstrated that its evolution involved the integration of the whole range of variables forcing climate change. Piezometric surveys designed to sample the salinity of the subsoil waters of Grande Glorieuse could therefore provide an objective indicator of the environment’s evolution. Then, based on information from geoelectrical investigations, we proved that the spatial distribution of salinity is strongly dependent on the geological structure of the island. Structural heterogeneities can influence vulnerability of the island environment to salinization of the freshwater lens. Thus, characterization and monitoring of the freshwater lens will provide a reliable means of observing and managing anticipated climate changes on small islands. [Join J.-L., Banton O., Comte J.-C., Leze J., Massin F., Nicolini E. (2011), Assessing spatio-temporal patterns of groundwater salinity in small coral islands in the Western Indian Ocean, Western Indian Ocean Journal of Marine Science, 10(1), 1-12]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the efficiency of different agro-environmental strategies used to reduce groundwater pollution by nitrates, transport modelling in soils and groundwater has been carried out on two withdrawal areas in an alluvial plain. In a first time, the agro-environmental model AgriFlux allowed the simulation of water and nitrates fluxes flowing to groundwater. This model was calibrated for each agro-pedological unit of the studied territory. In a second time, the application of the hydrogeological model MODFLOW-MT3D allowed the simulation of nitrate transport in groundwater for the 1980-2004 period. This soil-groundwater coupled modelling has shown that soil nature is the first factor that conditions the vulnerability to nitrates. Thus, nitrate leaching occurs preferentially under sandy soils. Efficiency of different agro-environmental operations for groundwater quality recovery was quantified. The best results are obtained by combination of (1) grassland re-installation on sandy agricultural lots located in near well protection perimeter and (2) fertilization reduction on sandy agricultural lots located in the well alimentation area upstream the near protection perimeter. On other soils, the effect of grassland on groundwater quality improvement is more limited. Nevertheless, the control of nitrate fertilisation remains essential and is justified in both near and far well protection perimeters. Modelling thus allows optimising and priorizing agro-environmental actions in alluvial agricultural zones. [Comte J.-C., Banton O., Kockmann F., Villard A., Creuzot G. (2006), Assessment of groundwater quality recovery strategies using nitrate transport modelling. Application to the Saône alluvial formations (Tournus, Saône-et-Loire), Ingénieries Eau-Agriculture-Territoires, 45, 15-28]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.