13 resultados para Layered Shell Element
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.
This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.
Resumo:
This paper investigates the accuracy of new finite element modelling approaches to predict the behaviour of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, under low cycle fatigue. ABAQUS software is used as a modelling platform. Such joints are used for portal frames and potentially have good seismic resisting capabilities, which is important for construction in developing countries. The modelling implications of a two-dimensional beam element model, a three-dimensional shell element model and a three-dimensional solid element model are reported. Quantitative and qualitative results indicate that the three-dimensional quadratic S8R shell element model most accurately predicts the hysteretic behaviour and energy dissipation capacity of the connection when compared to the test results.
Resumo:
Recent efforts towards the development of the next generation of large civil and military transport aircraft within the European community have provided new impetus for investigating the potential use of composite material in the primary structure. One concern in this development is the vulnerability of co-cured stiffened structures to through-thickness stresses at the skin-stiffener interfaces particularly in stiffener runout regions. These regions are an inevitable consequence of the requirement to terminate stiffeners at cutouts, rib intersections or other structural features which interrupt the stiffener load path. In this respect, thickerskinned components are more vulnerable than thin-skinned ones. This work presents an experimental and numerical study of the failure of thick-sectioned stiffener runout specimens loaded in uniaxial compression. The experiments revealed that failure was initiated at the edge of the runout and propagated across the skin-stiffener interface. High frictional forces at the edge of the runout were also deduced from a fractographic analysis and it is postulated that these forces may enhance the fracture toughness of the specimens. Finite element analysis using an efficient thick-shell element and the Virtual Crack Closure Technique was able to qualitatively predict the crack growth characteristics for each specimen
Resumo:
This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal frames at elevated temperatures. The collapse behaviour of a simple rigid-jointed beam idealisation and a more accurate semi-rigid jointed shell element idealisation are compared for two different fire scenarios. For the case of the shell element idealisation, the semi-rigidity of the cold-formed steel joints is explicitly taken into account through modelling of the bolt-hole elongation stiffness. In addition, the shell element idealisation is able to capture buckling of the cold-formed steel sections in the vicinity of the joints. The shell element idealisation is validated at ambient temperature against the results of full-scale tests reported in the literature. The behaviour at elevated temperatures is then considered for both the semi-rigid jointed shell and rigid-jointed beam idealisations. The inclusion of accurate joint rigidity and geometric non-linearity (second order analysis) are shown to affect the collapse behaviour at elevated temperatures. For each fire scenario considered, the importance of base fixity in preventing an undesirable outwards collapse mechanism is demonstrated. The results demonstrate that joint rigidity and varying fire scenarios should be considered in order to allow for conservative design.
Resumo:
Animal fights are typically preceded by displays and there is debate whether these are always honest. We investigated the prefight period in hermit crabs, Pagurus bernhardus, during which up to four types of display plus other activities that might provide information are performed. We determined how each display influences or predicts various fight decisions, and related these displays to the motivational state of the attacker, as determined by a startle response, and of the motivational state of the defender, as determined by the duration for which it resisted eviction from its shell. Two displays appeared to have consistent but different effects. Cheliped presentation, where the claws were held in a stationary position, often by both crabs but for longer by the larger, seemed to be honest, and allowed for mutual size assessment. This display enhanced the motivation and the success of the larger crab. In contrast, cheliped extension, involving the rapid thrust of the open chelae towards the opponent, did not seem to allow for mutual size assessment and may contain an element of bluff. It was performed more by the smaller crab and enhanced its success. The complexity of displays in this species appears to allow for both honesty and manipulation.
Resumo:
A simple linear beam idealization of a cold-formed steel portal frame is presented in which beam elements are used to idealize the column and rafter members, and rotational spring elements are used to represent the rotational flexibility of the joints. In addition, the beam idealization takes into account the finite connection length of the joints. Deflections predicted using the beam idealization are shown to be comparable to deflections obtained from both a linear finite element shell idealization and full-scale laboratory tests. Using the beam idealization, deflections under rafter load are divided into three components: Deflection due to flexure of the column and rafter members, deflection due to bolt-hole elongation, and deflection due to in-plane bracket deformation. Of these deflection components, the deflection due to bolt-hole elongation is the most significant and cannot, therefore, be ignored. Using the beam idealization, engineers can analyze and design cold-formed steel portal frames, including making appropriate allowances for connection effects, without the need to resort to expensive finite element shell analysis.
Resumo:
A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.
Resumo:
A full-scale, non-uniform natural fire test on a cold-formed steel portal frame building is described. The results of the test are used to validate a non-linear, elasto-plastic, finite element shell idealisation, for the purposes of later forming the basis of a performance-based design approach for cold-formed steel portal frames at elevated temperatures.
Resumo:
Examination of a selection of shell and bone from archaeological assemblages excavated at Niah Cave and Gua Sireh, both of which are located in Sarawak, Borneo, has revealed the deliberate application of coloured material to one or more surfaces. Small fragments of the surface colourant were analysed using a variety of techniques, including microscopy, energy dispersive microwave analysis and infra-red spectrophotometry. These procedures established that, although red in colour, the applied coating in each instance was not red iron oxide. It is suggested that, based on the chemical components present, this coating was a tree resin or a similar organic substance. The paper further reports the presence of enhanced chloride values in the colourant recovered from the ancient human cranial fragment tested. It is suggested that elevated concentrations of this trace element may indicate that the site, the human remains or ingredients within the colourant were once in close proximity to the sea. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fragments of chelonian carapace and plastral dermal plates are well-represented from archaeological sites in the world's dry and wet tropics. However, although these bones are easily identified at an element level, few archaeological reports have explored the potential of using features of form and surface sculpturing as a way to refine that identification to genus or species. The ability to achieve such a refinement would benefit environmental and human subsistence strategy models alike. The objective of the current paper was to isolate recurrent and readily visible surface characteristics on the dermal plates from a selection of commonly occurring Southeast Asian hard- and soft-shelled turtles. Using these criteria, analysis is made of the chelonian assemblage from pre- and post-Last Glacial Maximum (LGM) cultural deposits in the West Mouth of Niah Cave. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Lap joints are widely used in the manufacture of stiffened panels and influence local panel sub-component stability, defining buckling unit dimensions and boundary conditions. Using the Finite Element method it is possible to model joints in great detail and predict panel buckling behaviour with accuracy. However, when modelling large panel structures such detailed analysis becomes computationally expensive. Moreover, the impact of local behaviour on global panel performance may reduce as the scale of the modelled structure increases. Thus this study presents coupled computational and experimental analysis, aimed at developing relationships between modelling fidelity and the size of the modelled structure, when the global static load to cause initial buckling is the required analysis output. Small, medium and large specimens representing welded lap-joined fuselage panel structure are examined. Two element types, shell and solid-shell, are employed to model each specimen, highlighting the impact of idealisation on the prediction of welded stiffened panel initial skin buckling.
Resumo:
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical properties and failure characteristics of such materials. The test results confirmed that the 3D printed structures are laminated with apparent orthotropy. Based on the experimental results, a stress-strain relationship and a failure criterion based on the maximum stress criterion for orthotropic materials are proposed for the structures of 3D printed material. Finally, a finite element analysis was conducted for a 3D printed shell structure, which shows that the printing direction has a significant influence on the load bearing capacity of the structure.
Resumo:
This paper presents the results of a full-scale site fire test performed on a cold-formed steel portal frame building with semi-rigid joints. The purpose of the study is to establish a performance-based approach for the design of such structures in fire boundary conditions. In the full-scale site fire test, the building collapsed asymmetrically at a temperature of 714°C. A non-linear elasto-plastic finite-element shell model is described and is validated against the results of the full-scale test. A parametric study is presented that highlights the importance of in-plane restraint from the side rails in preventing an outwards sway failure for both a single portal and full building geometry model. The study also demonstrates that the semi-rigidity of the joints should be taken into account in the design. The single portal and full building geometry models display a close match to site test results with failure at 682°C and 704°C, respectively. A design case is described in accordance with Steel Construction Institute design recommendations. The validated single portal model is tested with pinned bases, columns protected, realistic loading and rafters subject to symmetric uniform heating in accordance with the ISO 834 standard fire curve; failure occurs at 703°C.