29 resultados para Lattice gauge theories, Spin chains

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide an extensive discussion on a scheme for Hamiltonian tomography of a spin-chain model that does not require state initialization [Phys. Rev. Lett. 102 ( 2009) 187203]. The method has spurred the attention of the physics community interested in indirect acquisition of information on the dynamics of quantum many-body systems and represents a genuine instance of a control-limited quantum protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfect state transfer is possible in modulated spin chains [Phys. Rev. Lett. 92, 187902 (2004)], imperfections, however, are likely to corrupt the state transfer. We study the robustness of this quantum communication protocol in the presence of disorder both in the exchange couplings between the spins and in the local magnetic field. The degradation of the fidelity can be suitably expressed, as a function of the level of imperfection and the length of the chain, in a scaling form. In addition the time signal of fidelity becomes fractal. We further characterize the state transfer by analyzing the spectral properties of the Hamiltonian of the spin chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the entanglement spectrum near criticality in finite quantum spin chains. Using finite size scaling we show that when approaching a quantum phase transition, the Schmidt gap, i.e., the difference between the two largest eigenvalues of the reduced density matrix ?1, ?2, signals the critical point and scales with universal critical exponents related to the relevant operators of the corresponding perturbed conformal field theory describing the critical point. Such scaling behavior allows us to identify explicitly the Schmidt gap as a local order parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform an extensive study of the properties of global quantum correlations in finite-size one-dimensional quantum spin models at finite temperature. By adopting a recently proposed measure for global quantum correlations (Rulli and Sarandy 2011 Phys. Rev. A 84 042109), called global discord, we show that critical points can be neatly detected even for many-body systems that are not in their ground state. We consider the transverse Ising model, the cluster-Ising model where three-body couplings compete with an Ising-like interaction, and the nearest-neighbor XX Hamiltonian in transverse magnetic field. These models embody our canonical examples showing the sensitivity of global quantum discord close to criticality. For the Ising model, we find a universal scaling of global discord with the critical exponents pertaining to the Ising universality class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions. Interestingly, we show that the distributions for different system sizes collapse on thesame curve after scaling for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii–Kosterlitz–Thouless type. We propose and analyse the feasibility of an experimental reconstruction of the distribution using light–matter interfaces for atoms in optical lattices or in optical resonators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbor coupling is no longer valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how preengineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a strategy for perfect state transfer in spin chains based on the use of an unmodulated coupling Hamiltonian whose coefficients are explicitly time dependent. We show that, if specific and nondemanding conditions are satisfied by the temporal behavior of the coupling strengths, our model allows perfect state transfer. The paradigm put forward by our proposal holds the promises to set an alternative standard to the use of clever encoding and coupling-strength engineering for perfect state transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entanglement spectrum describing quantum correlations in many-body systems has been recently recognized as a key tool to characterize different quantum phases, including topological ones. Here we derive its analytically scaling properties in the vicinity of some integrable quantum phase transitions and extend our studies also to nonintegrable quantum phase transitions in one-dimensional spin models numerically. Our analysis shows that, in all studied cases, the scaling of the difference between the two largest nondegenerate Schmidt eigenvalues yields with good accuracy critical points and mass scaling exponents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Does bound entanglement naturally appear in quantum many-body systems? We address this question by showing the existence of bound-entangled thermal states for harmonic oscillator systems consisting of an arbitrary number of particles. By explicit calculations of the negativity for different partitions, we find a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We offer an interpretation of this result in terms of entanglement-area laws, typical of these systems. Finally, we discuss generalizations of this result to other systems, including spin chains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orbitally degenerate frustrated spinels, Cd1-xZnxV2O4, with 0 <= x <= 1 were investigated using elastic and inelastic neutron scattering techniques. In the end members with x=0 and 1, a tetragonal distortion (c < a) has been observed upon cooling mediated by a Jahn-Teller distortion that gives rise to orbital ordering. This leads to the formation of spin chains in the ab-plane that upon further cooling, Neel ordering is established due to interchain coupling. In the doped compositions, however, the bulk susceptibility, chi, shows that the macroscopic transitions to cooperative orbital ordering and long-range antiferromagnetic ordering are suppressed. However, the inelastic neutron scattering measurements suggest that the dynamic spin correlations at low temperatures have similar one-dimensional characteristics as those observed in the pure samples. The pair density function analysis of neutron diffraction data shows that the local atomic structure does not become random with doping but rather consists of two distinct environments corresponding to ZnV2O4 and CdV2O4. This indicates that short-range orbital ordering is present which leads to the one-dimensional character of the spin correlations even in the low temperature cubic phase of the doped compositions.