48 resultados para Lanthanide luminescence

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and photophysical evaluation of a new lanthanide luminescence imaging agent is presented. The agent, a terbium-based cyclen complex can, through the use of an iminodiacetate moiety, bind to damaged bone surface via chelation to exposed Ca(II) sites, enabling the imaging of the damage using confocal fluorescence scanning microscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photophysical properties of lanthanide complexes have been studied extensively; however, fundamental parameters such as the intrinsic quantum yield as well as radiative and nonradiative decay rates are difficult or even impossible to measure experimentally. Herein, a photoacoustic (PA) method is proposed to determine the intrinsic quantum yield of lanthanide complexes with lifetimes in the order of milliseconds. This method is used to determine the intrinsic quantum yields for europium (III)-containing metallomesogens as well as terbium(III) complexes. The results show that the PA signal is sensitive to both the lifetime and the ratio of the fast-to-slow heat component of the samples. It is found that there is an efficient ligand sensitization and a moderate intrinsic quantum yield for the complexes. The intrinsic quantum yield of Eu3+ in the metallomesogens exhibits an obvious increase upon the isotropic liquid to smectic A transition. The proposed PA method is quite simple, and con contribute to a clearer understanding of the photophysical processes in luminescent lanthanide complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solubility and uniform distribution of lanthanide complexes in sol-get glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide beta-diketonate complexes (Ln = Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(Ill) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anhydrous neodymium(III) iodide and erbium(Ill) iodide were dissolved in carefully dried batches of the ionic liquid 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(12)mim][Tf2N]. Provided that the ionic liquid had a low water content, intense near-infrared emission could be observed for both the neodymium(III) ion and for the erbium(III) ion. Luminescence lifetimes have been measured, and the quantum yield of the neodymium(III) sample has been measured. Exposure of the hygroscopic samples to atmospheric moisture conditions caused a rapid decrease of the luminescence intensities. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu2:13 and Eu2:23 that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu2:13 and Eu2:23.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionogels are solid oxide host networks con. ning at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving lanthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C(6)mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C(6)mim][Ln(tta)(4)], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choline](3)[Tb(dpa)(3)], where dpa = pyridine-2,6-dicarboxylate (dipicolinate), were chosen as the lanthanide complexes. The ionogels are luminescent, ion-conductive inorganic-organic hybrid materials. Depending on the lanthanide(III) ion, emission in the visible or the near-infrared regions of the electromagnetic spectrum was observed. The work presented herein highlights that the confinement did not disturb the first coordination sphere of the lanthanide ions and also showed the excellent luminescence performance of the lanthanide tetrakis beta-diketonate complexes. The crystal structures of the complexes [C(6)mim][Yb(tta)(4)] and [choline](3)[Tb(dpa)(3)] are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids were used as solvents for dispersing luminescent lanthanide-doped LaF3:Ln(3+) nanocrystals (Ln(3+) = Eu3+ and Nd3+). To increase the solubility of the inorganic nanoparticles in the ionic liquids, the nanocrystals were prepared with different stabilizing ligands, i.e., citrate, N,N,N-trimethylglycine (betaine), and lauryldimethylglycine (lauryl betaine). LaF3:5%Ln(3+) :betaine could successfully be dispersed in 1-butyl-1-methylpyrrolidinium bis(tiifluoromethylsulfonyl)imide [C(4)mpyr][Tf2N], 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate [C(4)mpyr][TfO], and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][Tf2N] but only in limited amounts. Red photoluminescence was observed for the europium(III)-containing nanoparticles and near-infrared luminescence for the neodymium(III)-containing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The near-infrared luminescence properties of three (E)-N-hexadecyl-N',N'-dimethylamino-stilbazolium tetrakis(1-phenyl-3-methyl-4-benzoyl-5-pyrazolonato) lanthanide(III) complexes are described. These three complexes, containing trivalent neodymium, erbium and ytterbium, respectively, show near-infrared luminescence in acetonitrile solution upon UV irradiation. Luminescence decay times have been measured. The complexes consist of a positively charged hemicyanine chromophore with a long alkyl chain and a tetrakis(pyrazolonato) lanthanide(III) anion. Because of the absence of an alpha-hydrogen atom in the pyrazolonato ligands, and because of the saturation of the coordination sphere by four bidentate ligands, the luminescence properties are enhanced when compared to, e.g. quinolinate complexes. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we demonstrate that the effect of aromatic C-F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di-(pentafluorophinoyl)}-P,P-dipentafluoro-phenylphosphinimidic acid (HF(20)tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X-H vibrations that quench lanthanide emission. The synthesis, full characterisation including X-ray and NMR analysis as well as the photophysical properties of the emissive complexes [Ln(F(20)tpip)(3)], in which Ln=Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Y, Gd, are reported. The photophysical results contrast previous studies, in which fluorination of alkyl chains tends to lead to more emissive lanthanide complexes for both visible and NIR emission. Analysis of the fluorescence properties of the HF(20)tpip and [Gd(F(20)tpip)(3)] reveals that there is a low-lying state at around 715 nm that is responsible for partially quenching of the signal of the visible emitting lanthanides and we attribute it to a pi-sigma* state. However, all visible emitting lanthanides have long lifetimes and unexpectedly the [Dy(F(20)tpip)(3)] complex shows a lifetime of 0.3 ms, indicating that the elimination of high-energy vibrations from the ligand framework is particularly favourable for Dy. The NIR emitting lanthanides show strong emission signals in powder and solution with unprecedented lifetimes. The luminescence lifetimes of [Nd(F(20)tpip)(3)], [Er(F(20)tpip)(3)] and [Yb(F(20)tpip)(3)] in deuteurated acetonitrile are 44, 741 and 1111 mu s. The highest value observed for the [Yb(F(20)tpip)(3)] complex is more than half the value of the Yb ion radiative lifetime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanide-containing liquid crystals exhibiting a mesophase close to room temperature were obtained by adduct formation between a long-chain salicylaldimine Schiff base and tris(2-thenoyltrifluoroacetonato)lanthanide( III) complexes or tris( benzoyltrifluoroacetonato) lanthanide( III) complexes. The mesophase was identified as a smectic A phase. The temperature range of the mesophase was found to decrease over the lanthanide series, and no mesophase was observed for the complexes of the smallest lanthanide ions. The photoluminescence of the europium( III), samarium( III), neodymium( III), and erbium( III) complexes was studied. It is shown that the clearing point can be detected by monitoring the luminescence decay time as a function of the temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-infrared emitting complexes of Nd(III), Er(III), and Yb(III) based on hexacoordinate lanthanide ions with an aryl functionalized imidodiphosphinate ligand, tpip, have been synthesized and fully characterized. Three tpip ligands form a shell around the lanthanide with the ligand coordinating via the two oxygens leading to neutral complexes, Ln(tpip)(3). In the X-ray crystal structures of Er(III) and Nd(III) complexes there is evidence of CH-pi interactions between the phenyl groups. Photophysical investigations of solution samples of the complexes demonstrate that all complexes exhibit relatively long luminescence lifetimes in nondeuteurated solvents. Luminescence studies of powder samples have also been recorded for examination of the properties of NIR complexes in the solid state for potential material applications. The results underline the effective shielding of the lanthanide by the twelve phenyl groups of the tpip ligands and the reduction of high-energy vibrations in close proximity to the lanthanide, both features important in the design of NIR emitting lanthanide complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that ionic liquids are promising solvents for near-infrared emitting lanthanide complexes, because ionic liquids are polar non-coordinating solvents that can solubilize lanthanide complexes. Neodymium(III) tosylate, bromide, triflate and sulfonylimide complexes were dissolved in 1-alkyl-3-methylimidazolium ionic liquids that contain the same anion as the neodymium(III) complexes. Near-infrared luminescence spectra of these neodymium(III) salts were measured by direct excitation of the neodymium(III) ion. The absorption spectra show detailed crystal-field fine structure and Judd-Ofelt parameters have been determined. Intense near-infrared luminescence was observed upon ligand excitation for neodymium(III) complexes with 1,10-phenanthroline or beta-diketonate ligands. (C) 2004 Elsevier B.V. All rights reserved.