63 resultados para LUNG DAMAGE
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The clinical course of cystic fibrosis (CF) lung disease varies between patients bearing identical CFTR mutations. This suggests that additional genetic modifiers may contribute to the pulmonary phenotype. The highly conserved ancestral haplotype 8.1 (8.1AH), carried by up to one quarter of Caucasians, comprises linked gene polymorphisms on chromosome 6 that play a key role in the inflammatory response: LTA +252A/G; TNF -308G/A, HSP70-2 +1267A/G and RAGE -429T/C. As inflammation is a key component inducing CF lung damage, we investigated whether the 8.1AH represents a lung function modifier in CF.
Resumo:
In patients with cystic fibrosis (CF) lung damage secondary to chronic infection is the main cause of death. Treatment of lung disease to reduce the impact of infection, inflammation and subsequent lung injury is therefore of major importance. Here we discuss the present status of antibiotic therapy for the major pathogens in CF airways, including prophylaxis against infection, eradication of early infection, suppression of chronic infection, and the treatment of infective exacerbations. We outline measures to optimize maintenance treatment for infection in the light of novel antibiotic drug formulations. We discuss new developments in culture-independent microbiological diagnostic techniques and the use of tools for monitoring the success of antibiotic treatment courses. Finally, cost-effectiveness analyses for antibiotic treatment in CF patients are discussed.
Resumo:
Background
Neutrophil elastase (NE)-mediated inflammation contributes to lung damage in cystic fibrosis (CF). We investigated if DX-890, a small-protein NE inhibitor, could reduce neutrophil trans-epithelial migration and reduce activity released from neutrophils and NE-induced cytokine expression in airway epithelial cells.
Methods
Activated blood neutrophils (CF and healthy) treated ± DX-890 were assayed for NE activity. Transmigration of calcein-labeled neutrophils was studied using a 16HBE14o- epithelial monolayer. IL-8 release from primary nasal epithelial monolayers (CF and healthy) was measured after treatment ± DX-890 and NE or CF sputum.
Results
DX-890 reduced NE activity from neutrophils (CF and healthy) and reduced neutrophil transmigration. DX-890 pre-treatment reduced IL-8 release from epithelial cells of healthy or CF subjects after stimulation with NE and CF sputum sol. All improvements with DX-890 were statistically significant (p < 0.05).
Conclusions
DX-890 reduces NE-mediated transmigration and inflammation. NE inhibition could be useful in managing neutrophilic airway inflammation in CF.
Resumo:
The 2-year survival rate after conventional radiotherapy for carcinoma of the oesophagus is around 10–20% [8]. Concomitant chemoradiation schedules have produced survival figures of 25–30% at 5 years, and this is now considered standard treatment [1]. Conformal radiotherapy techniques offer the potential to deliver higher doses of radiation to oesophageal tumours [5], and this may improve local tumour control. However, concerns regarding late normal tissue damage to the lung parenchyma and spinal cord remain a concern. Intensitymodulated radiotherapy (IMRT) allows complex dose distributions to be produced, and can reduce the dose to radiosensitive organs close to the tumour [2]. The present study was designed to investigate the impact of beam intensity modulation on treatment planning for carcinoma of the oesophagus, by comparing a standard three-dimensional conformal radiotherapy (3DCRT) technique to an IMRT technique using the same number and orientation of treatment fields.
Resumo:
Cdk2 and cdk1 are individually dispensable for cell-cycle progression in cancer cell lines because they are able to compensate for one another. However, shRNA-mediated depletion of cdk1 alone or small molecule cdk1 inhibition abrogated S phase cell-cycle arrest and the phosphorylation of a subset of ATR/ATM targets after DNA damage. Loss of DNA damage-induced checkpoint control was caused by a reduction in formation of BRCA1-containing foci. Mutation of BRCA1 at S1497 and S1189/S1191 resulted in loss of cdk1-mediated phosphorylation and also compromised formation of BRCA1-containing foci. Abrogation of checkpoint control after cdk1 depletion or inhibition in non-small-cell lung cancer cells sensitized them to DNA-damaging agents. Conversely, reduced cdk1 activity caused more potent G2/M arrest in nontransformed cells and antagonized the response to subsequent DNA damage. Cdk1 inhibition may therefore selectively sensitize BRCA1-proficient cancer cells to DNA-damaging treatments by disrupting BRCA1 function.
Resumo:
Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.
Resumo:
PHD finger protein 20 (PHF20) is a transcription factor, which was originally identified in glioma patients. PHF20 appears to be a novel antigen in glioma, and has also termed glioma-expressed antigen 2. PHF20 is thought to contribute to the development of cancers, including glioblastoma, lung cancer, colon cancer and ovarian cancer. However, little is known about the function of PHF20 in various cancers. Here we report that PHF20 contains two consensus sites for protein kinase B (PKB) phosphorylation (RxRxxS/T). PKB can directly phosphorylate PHF20 on Ser291 in vitro and in vivo. It has been shown that PKB participates in the tumor suppressor p53 regulated gene expression program and has a direct effect on p21 regulation after DNA damage. UV-induced DNA damage results in accumulation of p53 and PKB activation. Interestingly, PKB-mediated PHF20 phosphorylation led to an inhibition of p53 induction following UV treatment, leading to the reduction of p21 transcriptional activity. Using anti PHF20 and anti pPKB (S473) antibodies, these events were mapped in various human cancer tissues. Taken together, these data suggest that PHF20 is a novel substrate for PKB and its phosphorylation by PKB plays an important role in tumorigenesis via regulating of p53 mediated signaling. © 2012 Elsevier Inc.
Resumo:
There is evidence that oxidative stress plays a role in the development of chronic lung disease (CLD), with immature lungs being particularly sensitive to the injurious effect of oxygen and mechanical ventilation. We analyzed total ascorbate, urate, and protein carbonyls in 102 bronchoalveolar lavage fluid samples from 38 babies (33 preterm, 24–36 wk gestation; 5 term, 37–39 wk gestation). Preterm babies had significantly decreasing concentrations of ascorbate, urate, and protein carbonyls during the first 9 days of life (days 1–3, 4–6, and 7–9, Kruskal-Wallis ANOVA: P 5 0.016, P , 0.0001, and P 5 0.010, respectively). Preterm babies had significantly higher protein carbonyl concentrations at days 1–3 and 4–6 (P 5 0.005 and P 5 0.044) compared with term babies. Very preterm babies (24–28 wk gestation) had increased concentrations of protein carbonyls at days 4–6 (P 5 0.056) and significantly decreased ascorbate concentrations at days 4–6 (P 5 0.004) compared with preterm babies (29–36 wk gestation). Urate concentrations were significantly elevated at days 1–3 (P 5 0.023) in preterm babies who subsequently developed CLD. This study has shown the presence of oxidative stress in the lungs of preterm babies during ventilation, especially in those who subsequently developed CLD.