8 resultados para LDLR
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.
Resumo:
Background—Abdominal aortic aneurysm (AAA) is a common cardiovascular disease among older people and demonstrates significant heritability. In contrast to similar complex diseases, relatively few genetic associations with AAA have been confirmed. We reanalysed our genome-wide study and carried through to replication suggestive discovery associations at a lower level of significance.
Methods and Results—A genome-wide association study was conducted using 1,830 cases from the UK, New Zealand and Australia with infra-renal aorta diameter =30mm or ruptured AAA and 5,435 unscreened controls from the 1958 Birth Cohort and National Blood Service cohort from the Wellcome Trust Case Control Consortium. Eight suggestive associations with P<1x10-4 were carried through to in silico replication in 1,292 AAA cases and 30,503 controls. One SNP associated with P<0.05 after Bonferroni correction in the in silico study underwent further replication (706 AAA cases and 1,063 controls from the UK, 507 AAA cases and 199 controls from Denmark and 885 AAA cases and 1,000 controls from New Zealand). Low density lipoprotein receptor (LDLR) rs6511720 A, was significantly associated overall and in three of five individual replication studies. The full study showed an association that reached genome-wide significance (odds ratio 0.76; 95% confidence interval 0.70 to 0.83; P=2.08x10-10).
Conclusions—LDLR rs6511720 is associated with abdominal aortic aneurysm. This finding is consistent with established effects of this variant on coronary artery disease. Shared aetiological pathways with other cardiovascular diseases may present novel opportunities for preventative and therapeutic strategies for AAA.
Resumo:
We conducted a genome-wide association study testing single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) for association with early-onset myocardial infarction in 2,967 cases and 3,075 controls. We carried out replication in an independent sample with an effective sample size of up to 19,492. SNPs at nine loci reached genome-wide significance: three are newly identified (21q22 near MRPS6-SLC5A3-KCNE2, 6p24 in PHACTR1 and 2q33 in WDR12) and six replicated prior observations1-4 (9p21, 1p13 near CELSR2-PSRC1-SORT1, 10q11 near CXCL12, 1q41 in MIA3, 19p13 near LDLR and 1p32 near PCSK9). We tested 554 common copy number polymorphisms (>1% allele frequency) and none met the pre-specified threshold for replication (P < 10-3). We identified 8,065 rare CNVs but did not detect a greater CNV burden in cases compared to controls, in genes compared to the genome as a whole, or at any individual locus. SNPs at nine loci were reproducibly associated with myocardial infarction, but tests of common and rare CNVs failed to identify additional associations with myocardial infarction risk.
Resumo:
Familial hypercholesterolemia (FH) is a common single gene disorder, which predisposes to coronary artery disease. In a previous study, we have shown that in patients with definite FH around 20% had no identifiable gene defect after screening the entire exon coding area of the low density lipoprotein receptor (LDLR) and testing for the common Apolipoprotein B (ApoB) R3500Q mutation. In this study, we have extended the screen to additional families and have included the non-coding intron splice regions of the gene. In families with definite FH (tendon xanthoma present, n = 68) the improved genetic screening protocol increased the detection rate of mutations to 87%. This high detection rate greatly enhances the potential value of this test as part of a clinical screening program for FH. In contrast, the use of a limited screen in patients with possible FH (n = 130) resulted in a detection rate of 26%, but this is still of significant benefit in diagnosis of this genetic condition. We have also shown that 14% of LDLR defects are due to splice site mutations and that the most frequent splice mutation in our series (c.1845 + 11 c > g) is expressed at the RNA level. In addition, DNA samples from the patients in whom no LDLR or ApoB gene mutations were found, were sequenced for the NARC-1 gene. No mutations were identified which suggests that the role of NARC-1 in causing FH is minor. In a small proportion of families (
Resumo:
The aim of this study was to develop a mutation screening protocol for familial hypercholesterolaemia (FH) patients and to assess genotype/phenotype effects in terms of pre-treatment lipid profiles and presentation of tendon xanthomata (TX). A total of 158 families with clinical definitions of possible (120) or definite (38) FH were studied using a tiered screening protocol. Mutations were identified in 52 families, 44 families showing 23 different LDLR gene defects and eight families showing the common Apo B100 gene defect R3500Q. LDLR defects were detected in various regions of the gene with 56% in the LDL binding domain (exons 2-6) and 37% in the EGF precursor homology domain (exons 7-14). The most common mutations were D461N(7), C210X(5), 932delA(5), and C163Y(4). Frameshift mutations accounted for 20% with nonsense 13%, mis-sense 35%, splice 3%, Apo B 13% and 2% large deletion, 13% of clinically definite FH remained undefined. In conclusion, DNA based diagnosis is possible in 79% (30/38) of clinically definite FH families and of the 120 possible FH families at the start of the screening program, 18% (22/120) now have defined mutations. Overall 60 families from the original 158 meet the clinical and/or genetic criteria for definite FH. Tendon xanthomata were present in only 58% (30/52) of genetically defined FH families, thus limiting its use as a strict diagnostic criteria. Families with low density lipoprotein receptor (LDLR) defects present with higher total and LDL cholesterol levels and a higher incidence of TX than do those with the common Apo B variant, and frameshift mutations appear to have the most severe presentation. Copyright (C) 1999 Elsevier Science Ireland Ltd.
Resumo:
Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.
Resumo:
In this study LC n-3 PUFA-specific effects on the degree of monocyte differentiation and macrophage foam cell formation were investigated by treating PMA-induced immature and mature macrophage models with LC n-3/n-6 PUFA during and post-differentiation. During immature macrophage differentiation LC n-3 PUFA alone decreased TNFα mRNA levels. EPA, and the n-6 PUFAs, linoleic acid and arachidonic acid, decreased CD36 mRNA levels, and EPA also downregulated CD49d cell-surface expression. Both LC n-3 PUFA reduced LDLr mRNA levels in immature macrophages, while DHA alone reduced levels in mature macrophages. Post-differentiation, n-3 and -6 PUFA reduced basal, but not oxidised LDL dependent cholesterol levels in immature macrophages. LC n-3 PUFA-specific reductions in LDLr and LOX-1 mRNA expression were also observed.
This study found LC n-3 PUFA specific, anti-atherogenic effects were more significant in immature macrophages. LC n-3 PUFA effects may be modulated by the extent of monocyte to macrophage differentiation.