14 resultados para Julocrotine : B3LYP

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-electron oxidation of a methionine residue is thought to be a key step in the neurotoxicity of the beta amyloid peptide of Alzheimer's disease. The chemistry of the radical cation of N-formylmethioninamide (11+) and two model systems, dimethyl sulfide (1+) and ethyl methyl sulfide (6+), in the presence of oxygen have been studied by B3LYP/6-31G(d) and CBS-RAD calculations. The stable form of 11+ has a three-electron bond between the sulfur radical cation and the carbonyl oxygen atom of the i - 1 residue. The radical cation may lose a proton from the methyl or methylene groups flanking the oxidized sulfur. Both 11+ and the resultant C-centered radicals may add oxygen to form peroxy radicals. The calculations indicate that unlike C-centered radicals the sulfur radical cation does not form a covalent bond to oxygen but rather forms a loose ion-induced dipole complex with an S-O separation of about 2.7 Å, and is bound by about 13 kJ mol-1 (on the basis of 1+ + O2). Direct intramolecular abstraction of an H atom from the C site is unlikely. It is endothermic by more than 20 kJ mol-1 and involves a high barrier (G = 79 kJ mol-1). The -to-S C-centered radicals will add oxygen to form peroxy radicals. The OH BDEs of the parent hydroperoxides are in the range of 352-355 kJ mol-1, similar to SH BDEs (360 kJ mol-1) and C-H BDEs (345-350 kJ mol-1). Thus, the peroxy radicals are oxidizing species comparable in strength to thiyl radicals and peptide backbone C-centered radicals. Each peroxy radical can abstract a hydrogen atom from the backbone C site of the Met residue to yield the corresponding C-centered radical/hydroperoxide in a weakly exothermic process with modest barriers in the range of 64-92 kJ mol-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-ditert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butyl benzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of one tautomer (amine form) of cyano-carbamimidic acid ethyl ester or (amino-ethoxy-methylidene)aminoformonitrile (CAS: 13947-84-7) was determined by single crystal X-ray diffraction. Ab initio quantum chemical calculations at the B3LYP, MP2 and G3 levels were performed to investigate the stability and the formation of the different tautomers and conformers. The calculations indicate that the amine form is the more stable tautomer, showing a high degree of election conjugation. The most stable amine conformer located by the calculations corresponds to the crystallized structure. On the contrary, in the less stable imine form, the conjugation is separated by a N2-C2 single bond. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational approach to predict the thermodynamics for forming a variety of imidazolium-based salts and ionic liquids from typical starting materials is described. The gas-phase proton and methyl cation acidities of several protonating and methylating agents, as well as the proton and methyl cation affinities of many important methyl-, nitro-, and cyano- substituted imidazoles, have been calculated reliably by using the computationally feasible DFT (B3LYP) and MP2 (extrapolated to the complete basis set limit) methods. These accurately calculated proton and methyl cation affinities of neutrals and anions are used in conjunction with an empirical approach based on molecular volumes to estimate the lattice enthalpies and entropies of ionic liquids, organic solids, and organic liquids. These quantities were used to construct a thermodynamic cycle for salt formation to reliably predict the ability to synthesize a variety of salts including ones with potentially high energetic densities. An adjustment of the gas phase thermodynamic cycle to account for solid- and liquid-phase chemistries provides the best overall assessment of salt formation and stability. This has been applied to imidazoles (the cation to be formed) with alkyl, nitro, and cyano substituents. The proton and methyl cation donors studied were as follows: HCl, HBr, HI, (HO)(2)SO2, HSO3CF3 (TfOH), and HSO3(C6H4)CH3 (TsOH); CH3Cl, CH3Br, CH3I, (CH3O)(2)SO2, CH3SO3CF3 (TfOCH3) and CH3SO3(C6H4)CH3 (TsOCH3). As substitution of the cation with electron-withdrawing groups increases, the triflate reagents appear to be the best overall choice as protonating and methylating agents. Even stronger alkylating agents should be considered to enhance the chances of synthetic success. When using the enthalpies of reaction for the gas-phase reactants (eq 6) to form a salt, a cutoff value of - 13 kcal mol(-1) or lower (more negative) should be used as the minimum value for predicting whether a salt can be synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calculations of gamma spectra for positron annihilation for a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum distributions calculated using the density functional theory (DFT) based B3LYP/TZVP model. For positrons thermalised to room temperature, the calculation, in its simplest form, effectively treats the positron as a plane wave and gives positron annihilation ?-spectra linewidths that are broader (30-40%) than experiment, although the main chemical trends are reproduced. The main physical reason for this is the neglect of positron repulsion from the nuclei. We show that this effect can be incorporated through momentum-dependent correction factors, determined from positron-atom calculations, e.g., many-body perturbation theory. Inclusion of these factors in the calculation gives linewidths that are in improved agreement with experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GHMP kinases are a group of structurally-related small molecule kinases. They have been found in all kingdoms of life and are mostly responsible for catalysing the ATP-dependent phosphorylation of intermediary metabolites. Although the GHMP kinases are of clinical, pharmaceutical and biotechnological importance, the mechanism of GHMP-kinases is controversial. A catalytic base mechanism was suggested for mevalonate kinase that has a structural feature of the ?-phosphate of ATP close to an aspartate residue; however, for one GHMP member, homoserine kinase, where the residue acting as general base is absent, a direct phosphorylation mechanism was suggested. Furthermore, it has been proposed by some authors that all the GHMP kinases function via the direct phosphorylation mechanism. This controversy in mechanism has limited our ability to exploit these enzymes as drug targets and in biotechnology. Here the phosphorylation reaction mechanism of the human galactokinase, a member of GHMP kinase was investigated using molecular dynamics simulations and density functional theory-based QM/MM calculations (B3LYP-D/AMBER99). The reaction coordinates were localized by potential energy scan using adiabatic mapping method. Our results indicate that a highly conserved Glu174 captures Arg105 to the proximity of the a-phosphate of ATP forming a H-bond network, therefore the mobility of ATP in the large oxyanion hole is restricted. Arg228 functions to stabilize the negative charge developed at the ß,?-bridging oxygen of the ATP during bond cleavage. The reaction occurs via direct phosphorylation mechanism and the Asp186 in proximity of ATP does not directly participate in the reaction pathway. Since Arg228 is not conserved among GHMP kinases, reagents which form interactions with Arg228, and therefore can interrupt its function in phosphorylation may be developed into potential selective inhibitors for galactokinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic biomass pretreatment and the subsequent thermal conversion processes to produce solid, liquid, and gas biofuels are attractive solutions for today's energy challenges. The structural study of the main components in biomass and their macromolecular complexes is an active and ongoing research topic worldwide. The interactions among the three main components, cellulose, hemicellulose, and lignin, are studied in this paper using electronic structure methods, and the study includes examining the hydrogen bond network of cellulose-hemicellulose systems and the covalent bond linkages of hemicellulose-lignin systems. Several methods (semiempirical, Hartree-Fock, and density functional theory) using different basis sets were evaluated. It was shown that theoretical calculations can be used to simulate small model structures representing wood components. By comparing calculation results with experimental data, it was concluded that B3LYP/6-31G is the most suitable basis set to describe the hydrogen bond system and B3LYP/6-31G(d,p) is the most suitable basis set to describe the covalent system of woody biomass. The choice of unit model has a much larger effect on hydrogen bonding within cellulose-hemicellulose system, whereas the model choice has a minimal effect on the covalent linkage in the hemicellulose-lignin system. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms and kinetics studies of the formation of levoglucosan and formaldehyde from anhydroglucose radical have been carried out theoretically in this paper. The geometries and frequencies of all the stationary points are calculated at the B3LYP/6-31+G(D,P) level based on quantum mechanics, Six elementary reactions are found, and three global reactions are involved. The variational transition-state rate constants for the elementary reactions are calculated within 450-1500 K. The global rate constants for every pathway are evaluated from the sum of the individual elementary reaction rate constants. The first-order Arrhenius expressions for these six elementary reactions and the three pathways are suggested. By comparing with the experimental data, computational methods without tunneling correction give good description for Path1 (the formation of levoglucosan); while methods with tunneling correction (zero-curvature tunneling and small-curvature tunneling correction) give good results for Path2 (the first possibility for the formation of formaldehyde), all the test methods give similar results for Path3 (the second possibility for the formation of formaldehyde), all the modeling results for Path3 are in good agreement with the experimental data, verifying that it is the most possible way for the formation of formaldehyde during cellulose pyrolysis. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Chemical Equation Presented) The mechanisms and kinetics studies of the levoglucosan (LG) primary decomposition during cellulose pyrolysis have been carried out theoretically in this paper. Three decomposition mechanisms (C-O bond scission, C-C bond scission, and LG dehydration) including nine pathways and 16 elementary reactions were studied at the B3LYP/6-31 + G(D,P) level based on quantum mechanics. The variational transi-tion- state rate constants for every elementary reaction and every pathway were calculated within 298-1550 K. The first-order Arrhenius expressions for these 16 elementary reactions and nine pathways were suggested. It was concluded that computational method using transition state theory (TST) without tunneling correction gives good description for LG decomposition by comparing with the experimental result. With the temperature range of 667-1327 K, one dehydration pathway, with one water molecule composed of a hydrogen atom from C3 and a hydroxyl group from C2, is a preferred LG decomposition pathway by fitting well with the experimental results. The calculated Arrhenius plot of C-O bond scission mechanism is better agreed with the experimental Arrhenius plot than that of C-C bond scission. This C-O bond scission mechanism starts with breaking of C1-O5 and C6-O1 bonds with formation of CO molecule (C1-O1) simultaneously. C-C bond scission mechanism is the highest energetic barrier pathway for LG decomposition. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction mechanism of CO and Fe2O3 in a chemical-looping combustion (CLC) was studied based on density functional theory (DFT) at B3LYP level in this paper. The structures of all reactants, intermediate, transition structures and products of this reaction had been optimized and characterized. The reaction path was validated by means of the intrinsic reaction coordinate (IRC) approach. The result showed that the reaction was divided into two steps, the adsorbed CO molecule on Fe 2O3 surface formed a medium state with one broken Fe-O bond in step1, and in step2, O atom broken here oxidized a subsequent CO molecule in the fuel reactor. Thus, Fe2O3 molecule transport O from air to oxide CO continually in the CLC process. The activation energy and rate coefficients of the two steps were also obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.