86 resultados para Janus Kinase 2

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the discovery of the Janus kinase (JAK) 2 V617F mutation in 2005 the explosion of research and drug development activity has not only advanced our understanding of the pathogenesis of myeloproliferative neoplasms (MPNs) but also triggered debate about classification, allowed revised diagnostic and response criteria, provided a target for treatment and a mode of monitoring its success. These changes and the resultant clinical research are discussed in this article where we argue that discovery of the JAK2 V617F mutation has signalled the much delayed change in therapeutic paradigm for myelofibrosis and possibly other MPNs from palliation and allowing us to move closer to, but not yet attain, a cure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete.

IMPLICATIONS: This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. Methods We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. Results We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. Conclusions JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Idiopathic erythrocytosis (IE) is characterized by erythrocytosis in the absence of megakaryocytic or granulocytic hyperplasia, and is associated with variable serum erythropoietin (Epo) levels. Most patients with IE lack the JAK2 V617F mutation that occurs in the majority of polycythemia vera patients. Four novel JAK2 mutant alleles have recently been described in patients with V617F-negative myeloproliferative disorders presenting with erythrocytosis. The aims of this study were to assess the prevalence of JAK2 exon 12 mutations in IE patients, and to determine the associated clinicopathological features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of histone deacetylases may be an important target in patients with myeloproliferative neoplasms. This investigator-initiated, non-randomized, open-label phase II multi-centre study included 63 patients (19 essential thrombocythaemia, 44 polycythaemia vera) from 15 centres. The primary objective was to evaluate if vorinostat was followed by a decline in clonal myeloproliferation as defined by European Leukaemia Net. Thirty patients (48%) completed the intervention period (24 weeks of therapy). An intention-to-treat response rate of 35% was identified. Pruritus was resolved [19% to 0% (P = 0·06)] and the prevalence of splenomegaly was lowered from 50% to 27% (P = 0·03). Sixty-five per cent of the patients experienced a decrease in JAK2 V617F allele burden (P = 0·006). Thirty-three patients (52% of patients) discontinued study drug before end of intervention due to adverse events (28 patients) or lack of response (5 patients). In conclusion, vorinostat showed effectiveness by normalizing elevated leucocyte and platelet counts, resolving pruritus and significantly reducing splenomegaly. However, vorinostat was associated with significant side effects resulting in a high discontinuation rate. A lower dose of vorinostat in combination with conventional and/or novel targeted therapies may be warranted in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The chronic myeloproliferative disorders (MPD) are clonal haemopoietic stem cell disorders.

AIMS: The incidence of JAK2 V617F mutation was sought in a population of patients with MPD.

METHODS: The JAK2 V617 mutation status was determined in 79 patients with known MPD and 59 patients with features suggestive of MPD.

RESULTS: The mutation was found in patients with polycythaemia vera, essential thrombocythaemia, idiopathic myelofibrosis and in patients with other chronic myeloproliferative disorders. Eight JAK2 V617F positive cases were identified amongst those patients with features suggestive of MPD.

CONCLUSIONS: The incidence of the JAK2 V617F mutation in MPD patients is similar to that reported by other groups. The assay confirmed and refined the diagnosis of several patients with features indicative of MPD. We suggest screening for this mutation in all patients with known and suspected MPD as identification is valuable in classification and is a potential target for signal transduction therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Erythropoietin (Epo), the major regulator of erythropoiesis, and its cognate receptor (EpoR) are also expressed in nonerythroid tissues, including tumors. Clinical studies have highlighted the potential adverse effects of erythropoiesis-stimulating agents when used to treat cancer-related anemia. We assessed the ability of EpoR to enhance tumor growth and invasiveness following Epo stimulation. A benign noninvasive rat mammary cell line, Rama 37, was used as a model system. Cell signaling and malignant cell behavior were compared between parental Rama 37 cells, which express few or no endogenous EpoRs, and a modified cell line stably transfected with human EpoR (Rama 37-28). The incubation of Rama 37-28 cells with pharmacologic levels of Epo led to the rapid and sustained increases in phosphorylation of signal transducers and activators of transcription 5, Akt, and extracellular signal-regulated kinase. The activation of these signaling pathways significantly increased invasion, migration, adhesion, and colony formation. The Epo-induced invasion capacity of Rama 37-28 cells was reduced by the small interfering RNA-mediated knockdown of EpoR mRNA levels and by inhibitors of the phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways with adhesion also reduced by Janus-activated kinase 2/signal transducers and activators of transcription 5 inhibition. These data show that Epo induces phenotypic changes in the behavior of breast cancer cell lines and establishes links between individual cell signaling pathways and the potential for cancer spread.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myeloproliferative neoplasms (MPNs) are characterized by overproduction of mature functional blood cells and are often associated with an acquired genetic mutation of Janus Kinase 2V617F. The etiology of MPNs remains unknown. The aim of this article was to review and collate all known published data investigating environmental and lifestyle factors associated with MPNs. Medline, Embase, PubMed, Cochrane, and Web of Science were systematically searched using terms for MPNs and observational study designs to identify studies investigating the risk factors for MPNs published before March 2010. Of 9,156 articles identified, 19 met the selection criteria. Although the studies exhibited heterogeneity, in case definitions, study design, and risk factors investigated, several themes emerged. A strong association was found with Jewish descent, and with a family history of MPNs. Autoimmune conditions, specifically Crohn's disease, were more common in patients with MPNs. Certain occupational groups were significantly associated with MPNs including occupations with potential exposure to benzene and/or petroleum. Blood donation was associated with an increased risk of polycythemia vera specifically. The vast heterogeneity in studies identified as part of this review suggests that large scale systematic assessment of etiological factors associated with MPNs is warranted. (C) 2011 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Anemia is considered a negative prognostic risk factor for survival in patients with myelofibrosis. Most patients with myelofibrosis are anemic, and 35-54 % present with anemia at diagnosis. Ruxolitinib, a potent inhibitor of Janus kinase (JAK) 1 and JAK2, was associated with an overall survival benefit and improvements in splenomegaly and patient-reported outcomes in patients with myelofibrosis in the two phase 3 COMFORT studies. Consistent with the ruxolitinib mechanism of action, anemia was a frequently reported adverse event. In clinical practice, anemia is sometimes managed with erythropoiesis-stimulating agents (ESAs). This post hoc analysis evaluated the safety and efficacy of concomitant ruxolitinib and ESA administration in patients enrolled in COMFORT-II, an open-label, phase 3 study comparing the efficacy and safety of ruxolitinib with best available therapy for treatment of myelofibrosis. Patients were randomized (2:1) to receive ruxolitinib 15 or 20 mg twice daily or best available therapy. Spleen volume was assessed by magnetic resonance imaging or computed tomography scan.

RESULTS: Thirteen of 146 ruxolitinib-treated patients had concomitant ESA administration (+ESA). The median exposure to ruxolitinib was 114 weeks in the +ESA group and 111 weeks in the overall ruxolitinib arm; the median ruxolitinib dose intensity was 33 mg/day for each group. Six weeks before the first ESA administration, 10 of the 13 patients had grade 3/4 hemoglobin abnormalities. These had improved to grade 2 in 7 of the 13 patients by 6 weeks after the first ESA administration. The rate of packed red blood cell transfusions per month within 12 weeks before and after first ESA administration remained the same in 1 patient, decreased in 2 patients, and increased in 3 patients; 7 patients remained transfusion independent. Reductions in splenomegaly were observed in 69 % of evaluable patients (9/13) following first ESA administration.

CONCLUSIONS: Concomitant use of an ESA with ruxolitinib was well tolerated and did not affect the efficacy of ruxolitinib. Further investigations evaluating the effects of ESAs to alleviate anemia in ruxolitinib-treated patients are warranted (ClinicalTrials.gov identifier, NCT00934544; July 6, 2009).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Severe asthma represents a major unmet clinical need. Eosinophilic inflammation persists in the airways of many patients with uncontrolled asthma, despite high-dose inhaled corticosteroid therapy. Suppressors of cytokine signalling (SOCS) are a family of molecules involved in the regulation of cytokine signalling via inhibition of the Janus kinase-signal transducers and activators of transcription pathway. We examined SOCS expression in the airways of asthma patients and investigated whether this is associated with persistent eosinophilia.

Healthy controls, mild/moderate asthmatics and severe asthmatics were studied. Whole genome expression profiling, quantitative PCR and immunohistochemical analysis were used to examine expression of SOCS1, SOCS2 and SOCS3 in bronchial biopsies. Bronchial epithelial cells were utilised to examine the role of SOCS1 in regulating interleukin (IL)-13 signalling in vitro.

SOCS1 gene expression was significantly lower in the airways of severe asthmatics compared with mild/moderate asthmatics, and was inversely associated with airway eosinophilia and other measures of T-helper type 2 (Th2) inflammation. Immunohistochemistry demonstrated SOCS1 was predominantly localised to the bronchial epithelium. SOCS1 overexpression inhibited IL-13-mediated chemokine ligand (CCL) 26 (eotaxin-3) mRNA expression in bronchial epithelial cells.

Severe asthma patients with persistent airway eosinophilia and Th2 inflammation have reduced airway epithelial SOCS1 expression. SOCS1 inhibits epithelial IL-13 signalling, supporting its key role in regulating Th2-driven eosinophilia in severe asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.