2 resultados para Isopoda.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association of invertebrate communities with macroalgae rafts has received much attention over recent decades, yet significant gaps in our knowledge remain with respect to the colonization process. Using laboratory-based experiments and in situ field trials in Strangford Lough, Northern Ireland, this study investigated whether members of the known rafting genus Idotea (sub-phylum Crustacea; order Isopoda) could effectively colonize rafts after shore seaweed detachment, or if their presence merely reflected a passive marooning process. Test tank arenas were used to identify traits that may influence the rafting potential of the dominant shore species Idotea granulosa and the well known rafter Idotea baltica. When released mid-water, I. granulosa initially ascended and associated with floating seaweed whereas I. baltica tended to descend with no clear habitat association. These findings conflict with the differential distribution of these Idotea species among rafts and shore algae, thus highlighting the complex nature of the potential of organisms to raft. In the field we considered the relative ability of different Idotea species to colonize tethered rafts composed of Ascophyllum nodosum and Fucus vesiculosus, cleaned of all vagile organisms and deployed at locations adjacent to established intertidal Idotea species populations. At the end of the experiment (after 44 days) rafts were inhabited by known rafting and shoreline species, confirming that colonization can occur after algal detachment. Previously considered shoreline species on occasion outnumbered well known rafters suggesting that a wide range of Idotea species can readily avail of macroalgal rafts as a potential dispersal mechanism or alternative habitat. © 2012 Marine Biological Association of the United Kingdom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species can have profound impacts on communities and it is increasingly recognized that such effects may be mediated by parasitism. The 'enemy release' hypothesis posits that invaders may be successful and have high impacts owing to escape from parasitism. Alternatively, we hypothesize that parasites may increase host feeding rates and hence parasitized invaders may have increased community impacts. Here, we investigate the influence of parasitism on the predatory impact of the invasive freshwater amphipod Gammarus pulex. Up to 70 per cent of individuals are infected with the acanthoce- phalan parasite Echinorhynchus truttae, but parasitized individuals were no different in body condition to those unparasitized. Parasitized individuals consumed significantly more prey (Asellus aquaticus; Isopoda) than did unparasitized individuals. Both parasitized and unparasitized individuals displayed Type-II functional responses (FRs), with the FR for parasitized individuals rising more steeply, with a higher asymptote, compared with unparasi- tized individuals. While the parasite reduced the fitness of individual females, we predict a minor effect on population recruitment because of low parasite prevalence in the peak reproductive period. The parasite thus has a large per capita effect on predatory rate but a low population fitness effect, and thus may enhance rather than reduce the impact of this invader.