14 resultados para Internal flow
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.
Resumo:
Since their introduction in the 1950s, marine outfalls with diffusers have been prone to saline intrusion, a process in which seawater ingresses into the outfall. This can greatly reduce the dilution and subsequent dispersion of wastewater discharged, sometimes resulting in serious deterioration of coastal water quality. Although long aware of the difficulties posed by saline intrusion, engineers still lack satisfactory methods for its prediction and robust design methods for its alleviation. However, with recent developments in numerical methods and computer power, it has been suggested that commercially available computational fluid dynamics (CFD) software may be a useful aid in combating this phenomenon by improving understanding through synthesising likely behaviour. This document reviews current knowledge on saline intrusion and its implications and then outlines a model-scale investigation of the process undertaken at Queen's University Belfast, using both physical and CFD methods. Results are presented for a simple outfall configuration, incorporating several outlets. The features observed agree with general observations from full-scale marine outfalls, and quantify the intricate internal flow mechanisms associated with saline intrusion. The two-dimensional numerical model was found to represent saline intrusion, but in a qualitative manner, not yet adequate for design purposes. Specific areas requiring further development were identified. The ultimate aim is to provide a reliable, practical and cost effective means by which engineers can minimise saline intrusion through optimised outfall design.
Resumo:
The development of accurate structural/thermal numerical models of complex systems, such as aircraft fuselage barrels, is often limited and determined by the smallest scales that need to be modelled. The development of reduced order models of the smallest scales and consequently their integration with higher level models can be a way to minimise the bottle neck present, while still having efficient, robust and accurate numerical models. In this paper a methodology on how to develop compact thermal fluid models (CTFMs) for compartments where mixed convection regimes are present is demonstrated. Detailed numerical simulations (CFD) have been developed for an aircraft crown compartment and validated against experimental data obtained from a 1:1 scale compartment rig. The crown compartment is defined as the confined area between the upper fuselage and the passenger cabin in a single aisle commercial aircraft. CFD results were utilised to extract average quantities (temperature and heat fluxes) and characteristic parameters (heat transfer coefficients) to generate CTFMs. The CTFMs have then been compared with the results obtained from the detailed models showing average errors for temperature predictions lower than 5%. This error can be deemed acceptable when compared to the nominal experimental error associated with the thermocouple measurements.
The CTFMs methodology developed allows to generate accurate reduced order models where accuracy is restricted to the region of Boundary Conditions applied. This limitation arises from the sensitivity of the internal flow structures to the applied boundary condition set. CTFMs thus generated can be then integrated in complex numerical modelling of whole fuselage sections.
Further steps in the development of an exhaustive methodology would be the implementation of a logic ruled based approach to extract directly from the CFD simulations numbers and positions of the nodes for the CTFM.
Resumo:
This paper presents a statistical-based fault diagnosis scheme for application to internal combustion engines. The scheme relies on an identified model that describes the relationships between a set of recorded engine variables using principal component analysis (PCA). Since combustion cycles are complex in nature and produce nonlinear relationships between the recorded engine variables, the paper proposes the use of nonlinear PCA (NLPCA). The paper further justifies the use of NLPCA by comparing the model accuracy of the NLPCA model with that of a linear PCA model. A new nonlinear variable reconstruction algorithm and bivariate scatter plots are proposed for fault isolation, following the application of NLPCA. The proposed technique allows the diagnosis of different fault types under steady-state operating conditions. More precisely, nonlinear variable reconstruction can remove the fault signature from the recorded engine data, which allows the identification and isolation of the root cause of abnormal engine behaviour. The paper shows that this can lead to (i) an enhanced identification of potential root causes of abnormal events and (ii) the masking of faulty sensor readings. The effectiveness of the enhanced NLPCA based monitoring scheme is illustrated by its application to a sensor fault and a process fault. The sensor fault relates to a drift in the fuel flow reading, whilst the process fault relates to a partial blockage of the intercooler. These faults are introduced to a Volkswagen TDI 1.9 Litre diesel engine mounted on an experimental engine test bench facility.
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.
Resumo:
Image segmentation plays an important role in the analysis of retinal images as the extraction of the optic disk provides important cues for accurate diagnosis of various retinopathic diseases. In recent years, gradient vector flow (GVF) based algorithms have been used successfully to successfully segment a variety of medical imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods can lead to less accurate segmentation results in certain cases. In this paper, we propose the use of a new mean shift-based GVF segmentation algorithm that drives the internal/external energies towards the correct direction. The proposed method incorporates a mean shift operation within the standard GVF cost function to arrive at a more accurate segmentation. Experimental results on a large dataset of retinal images demonstrate that the presented method optimally detects the border of the optic disc.
A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines
Resumo:
This paper details the numerical analysis of different vaned and vaneless radial inflow turbine stators. Selected results are presented from a test program carried out to determine performance differences between the radial turbines with vaned stators and vaneless volutes under the same operating conditions. A commercial computational fluid dynamics code was used to develop numerical models of each of the turbine configurations, which were validated using the experimental results. From the numerical models, areas of loss generation in the different stators were identified and compared, and the stator losses were quantified. Predictions showed the vaneless turbine stators to incur lower losses than the corresponding vaned stator at matching operating conditions, in line with the trends in measured performance.. Flow conditions at rotor inlet were studied and validated with internal static pressure measurements so as to judge the levels of circumferential nonuniformity for each stator design. In each case, the vaneless volutes were found to deliver a higher level of uniformity in the rotor inlet pressure field. [DOI: 10.1115/1.2988493]
Resumo:
Precise control over the interfacial area of aqueous and organic slugs in segmented flow in a microchannel reactor provides an attractive means to optimize the yield and productivity of a phase-transfer-catalyzed reaction. Herein, we report the selective alkylation of phenylacetonitrile to the monoalkylated product in a microchannel of 250-mu m internal diameter operated in a continuous and solvent-free manner in the slug-flow regime. The conversion of phenylacetonitrile increased from 40% to 99% as a result of a 97% larger slug surface-to-volume ratio when the volumetric aqueous-to-organic phase flow ratio was raised from 1.0 to 6.1 at the same residence time. The larger surface-to-volume ratio significantly promoted catalyst phase transfer but decreased selectivity because of the simultaneous increase of the rate of the consecutive reaction to the dialkylated product. There exists all Optimum flow ratio with a maximum productivity. Conversion and selectivity in the microchannel reactor were both found to be significantly larger than in a stirred reactor.
Resumo:
In this paper, the hydrodynamics and the pressure drop of liquid-liquid slug flow in round microcapillaries are presented. Two liquid-liquid flow systems are considered, viz. water-toluene and ethylene glycol/water-toluene. The slug lengths of the alternating continuous and dispersed phases were measured as a function of the slug velocity (0.03-0.5 m/s), the organic-to-aqueous flow ratio (0.1-4.0), and the microcapillary internal diameter (248 and 498 mu m). The pressure drop is modeled as the sum of two contributions: the frictional and the interface pressure drop. Two models are presented, viz, the stagnant film model and the moving film model. Both models account for the presence of a thin liquid film between the dispersed phase slug and the capillary wall. It is found that the film velocity is of negligible influence on the pressure drop. Therefore, the stagnant film model is adequate to accurately predict the liquid-liquid slug flow pressure drop. The influence of inertia and the consequent change of the slug cap curvature are accounted for by modifying Bretherton's curvature parameter in the interface pressure drop equation. The stagnant film model is in good agreement with experimental data with a mean relative error of less than 7%.
Resumo:
In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.
Resumo:
A novel multiplexed immunoassay for the analysis of phycotoxins in shellfish samples has been developed. Therefore, a regenerable chemiluminescence (CL) microarray was established which is able to analyze automatically three different phycotoxins (domoic acid (DA), okadaic acid (OA) and saxitoxin (STX)) in parallel on the analysis platform MCR3. As a test format an indirect competitive immunoassay format was applied. These phycotoxins were directly immobilized on an epoxy-activated PEG chip surface. The parallel analysis was enabled by the simultaneous addition of all analytes and specific antibodies on one microarray chip. After the competitive reaction, the CL signal was recorded by a CCD camera. Due to the ability to regenerate the toxin microarray, internal calibrations of phycotoxins in parallel were performed using the same microarray chip, which was suitable for 25 consecutive measurements. For the three target phycotoxins multi-analyte calibration curves were generated. In extracted shellfish matrix, the determined LODs for DA, OA and STX with values of 0.5±0.3 µg L(-1), 1.0±0.6 µg L(-1), and 0.4±0.2 µg L(-1) were slightly lower than in PBS buffer. For determination of toxin recoveries, the observed signal loss in the regeneration was corrected. After applying mathematical corrections spiked shellfish samples were quantified with recoveries for DA, OA, and STX of 86.2%, 102.5%, and 61.6%, respectively, in 20 min. This is the first demonstration of an antibody based phycotoxin microarray.
Resumo:
A wide variety of processes make use of plain orifice nozzles. Fuel injectors for internal combustion engines incorporate these nozzles to generate finely atomized sprays. Processes such as jet cutting, jet cleaning, and hydroentanglement, on the other hand, use similar nozzles, but require coherent jets. The spray or jet characteristics depend on the stability of the flow emerging from the orifice. This problem has been extensively researched for nozzles with diameters above 300 μm. Much less is known about the characteristics of jets produced by nozzles with smaller diameters, where viscous effects and small geometric variations due to manufacturing tolerances are likely to play an increasing role. Results are presented of a wide-ranging investigation of geometry effects on the flow parameters and jet characteristics of nozzles with diameters between 120 and 170 μm. Nozzles with circular cross-section and conical, cone-capillary and capillary axial designs were investigated. For conical and cone-capillary nozzles, the effect of cone angle and effects due to interactions between adjacent nozzles in the multi-hole cone-capillary nozzles were studied. For capillary nozzles, the effects of diameter variations and inlet edge roundness for capillary nozzles were considered. Furthermore, the effect of varying the aspect ratio (ratio of major and minor axes) of elliptical nozzles was studied. Flowrate and jet impact force measurements were carried out to determine the discharge coefficient C, velocity coefficient C, and contraction coefficient C of the nozzles for supply pressures between 3 and 12 MPa. Visualizations of the jet flow were carried out in the vicinity of the nozzle exit in order to identify near-nozzle flow regimes and to study jet coherence. The relationship between nozzle geometry, discharge characteristics, and jet coherence is examined. © IMechE 2006.
Resumo:
Forced convection heat transfer in a micro-channel filled with a porous material saturated with rarefied gas with internal heat generation is studied analytically in this work. The study is performed by analysing the boundary conditions for constant wall heat flux under local thermal non-equilibrium (LTNE) conditions. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous-fluid system is studied by considering thermally and hydrodynamically fully-developed conditions. The flow inside the porous material is modelled by the Darcy–Brinkman equation. Exact solutions are obtained for both the fluid and solid temperature distributions for two primary approaches models A and B using constant wall heat flux boundary conditions. The temperature distributions and Nusselt numbers for models A and B are compared, and the limiting cases resulting in the convergence or divergence of the two models are also discussed. The effects of pertinent parameters such as fluid to solid effective thermal conductivity ratio, Biot number, Darcy number, velocity slip and temperature jump coefficients, and fluid and solid internal heat generations are also discussed. The results indicate that the Nusselt number decreases with the increase of thermal conductivity ratio for both models. This contrasts results from previous studies which for model A reported that the Nusselt number increases with the increase of thermal conductivity ratio. The Biot number and thermal conductivity ratio are found to have substantial effects on the role of temperature jump coefficient in controlling the Nusselt number for models A and B. The Nusselt numbers calculated using model A change drastically with the variation of solid internal heat generation. In contrast, the Nusselt numbers obtained for model B show a weak dependency on the variation of internal heat generation. The velocity slip coefficient has no noticeable effect on the Nusselt numbers for both models. The difference between the Nusselt numbers calculated using the two models decreases with an increase of the temperature jump coefficient.