7 resultados para Interior

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel sections are often used as wall studs or floor joists; such sections often include web holes for ease of installation of the services. Cold-formed steel design codes, however, do not consider the effect of such web holes. In this paper, a combination of experimental tests and non-linear elasto-plastic finite element analyses are used to investigate the effect of such holes on web crippling under interior-two-flange (ITF) loading conditions; the cases of both flange fastened and flange unfastened are considered. A good agreement between the experimental tests and finite element analyses was obtained. The finite element model was then used for the purposes of a parametric study on the effect of different sizes and position of holes in the web. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, and the ratio of the distance from the edge of the bearing to the flat depth of web. Design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Causes of late Quaternary extinctions of large mammals (" megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or con-fined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents validated results of the optimization of cutouts in laminated carbon-fibre composite panels by adapting a recently developed optimization procedure known as Evolutionary Structural Optimization (ESO). An initial small cutout was introduced into each finite element model and elements were removed from around this cutout based on a predefined rejection criterion. In the examples presented, the limiting ply within each plate element around the cutout was determined based on the Tsai-Hill failure index. Plates with values below the product of the average Tsai-Hill number and a rejection ratio (RR) were subsequently removed. This process was iterated until a steady state was reached and the RR was then incremented by an evolutionary rate (ER). The above steps were repeated until a cutout of a desired area was achieved.