14 resultados para Integrated Weed Management

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. The effects of an integrated medicines management (IMM) program on medication appropriateness are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether an increased input by clinical pharmacists at each stage of the patient's hospital journey, from admission through discharge, resulted in an enhanced level of patient care as measured by a number of clinical and economic outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introducing automation into a managed environment includes significant initial overhead and abstraction, creating a disconnect between the administrator and the system. In order to facilitate the transition to automated management, this paper proposes an approach whereby automation increases gradually, gathering data from the task deployment process. This stored data is analysed to determine the task outcome status and can then be used for comparison against future deployments of the same task and alerting the administrator to deviations from the expected outcome. Using a machinelearning
approach, the automation tool can learn from the administrator's reaction to task failures and eventually react to faults autonomously.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of medicine selection methods have been used worldwide for formulary purposes. In Northern Ireland, integrated medicines management is being developed, and related projects have been carried out. This paper deals with the description of the STEPS (Safe Therapeutic Economic Pharmaceutical Selection) programme. The paper outlines the development of STEPS and its application as an element of a cost-effective medicines-management process in Northern Ireland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rationale, aims and objectives: This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. 

Methods: Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. 

Results: Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). 

Conclusions: Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stakeholder participation is viewed as a key element of ecosystem-based marine spatial planning (MSP). There is much debate over the effectiveness of stakeholder participation in ecosystem-based management (EBM) in general and over the form it should take. Particular challenges relating to participation in the marine environment are highlighted. A study of the Eastern Scotian Shelf Integrated Management initiative, which uses a collaborative planning model to implement EBM, is presented in order to explore these issues further. Criteria derived from a review of collaborative planning literature are employed to evaluate the effectiveness of this model, which is found to be a useful consensus-building tool. Although a strategic-level plan has been adopted, the initiative has encountered difficulties transitioning from plan development to plan implementation. These are attributable in large measure to deficiencies in the design of the collaborative model. Useful lessons relating mainly to stakeholder engagement, the role of the lead agency, and implementation strategies are advanced for those engaging in MSP processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The operation of supply chains (SCs) has for many years been focused on efficiency, leanness and responsiveness. This has resulted in reduced slack in operations, compressed cycle times, increased productivity and minimised inventory levels along the SC. Combined with tight tolerance settings for the realisation of logistics and production processes, this has led to SC performances that are frequently not robust. SCs are becoming increasingly vulnerable to disturbances, which can decrease the competitive power of the entire chain in the market. Moreover, in the case of food SCs non-robust performances may ultimately result in empty shelves in grocery stores and supermarkets.
The overall objective of this research is to contribute to Supply Chain Management (SCM) theory by developing a structured approach to assess SC vulnerability, so that robust performances of food SCs can be assured. We also aim to help companies in the food industry to evaluate their current state of vulnerability, and to improve their performance robustness through a better understanding of vulnerability issues. The following research questions (RQs) stem from these objectives:
RQ1: What are the main research challenges related to (food) SC robustness?
RQ2: What are the main elements that have to be considered in the design of robust SCs and what are the relationships between these elements?
RQ3: What is the relationship between the contextual factors of food SCs and the use of disturbance management principles?
RQ4: How to systematically assess the impact of disturbances in (food) SC processes on the robustness of (food) SC performances?
To answer these RQs we used different methodologies, both qualitative and quantitative. For each question, we conducted a literature survey to identify gaps in existing research and define the state of the art of knowledge on the related topics. For the second and third RQ, we conducted both exploration and testing on selected case studies. Finally, to obtain more detailed answers to the fourth question, we used simulation modelling and scenario analysis for vulnerability assessment.
Main findings are summarised as follows.
Based on an extensive literature review, we answered RQ1. The main research challenges were related to the need to define SC robustness more precisely, to identify and classify disturbances and their causes in the context of the specific characteristics of SCs and to make a systematic overview of (re)design strategies that may improve SC robustness. Also, we found that it is useful to be able to discriminate between varying degrees of SC vulnerability and to find a measure that quantifies the extent to which a company or SC shows robust performances when exposed to disturbances.
To address RQ2, we define SC robustness as the degree to which a SC shows an acceptable performance in (each of) its Key Performance Indicators (KPIs) during and after an unexpected event that caused a disturbance in one or more logistics processes. Based on the SCM literature we identified the main elements needed to achieve robust performances and structured them together to form a conceptual framework for the design of robust SCs. We then explained the logic of the framework and elaborate on each of its main elements: the SC scenario, SC disturbances, SC performance, sources of food SC vulnerability, and redesign principles and strategies.
Based on three case studies, we answered RQ3. Our major findings show that the contextual factors have a consistent relationship to Disturbance Management Principles (DMPs). The product and SC environment characteristics are contextual factors that are hard to change and these characteristics initiate the use of specific DMPs as well as constrain the use of potential response actions. The process and the SC network characteristics are contextual factors that are easier to change, and they are affected by the use of the DMPs. We also found a notable relationship between the type of DMP likely to be used and the particular combination of contextual factors present in the observed SC.
To address RQ4, we presented a new method for vulnerability assessments, the VULA method. The VULA method helps to identify how much a company is underperforming on a specific Key Performance Indicator (KPI) in the case of a disturbance, how often this would happen and how long it would last. It ultimately informs the decision maker about whether process redesign is needed and what kind of redesign strategies should be used in order to increase the SC’s robustness. The VULA method is demonstrated in the context of a meat SC using discrete-event simulation. The case findings show that performance robustness can be assessed for any KPI using the VULA method.
To sum-up the project, all findings were incorporated within an integrated framework for designing robust SCs. The integrated framework consists of the following steps: 1) Description of the SC scenario and identification of its specific contextual factors; 2) Identification of disturbances that may affect KPIs; 3) Definition of the relevant KPIs and identification of the main disturbances through assessment of the SC performance robustness (i.e. application of the VULA method); 4) Identification of the sources of vulnerability that may (strongly) affect the robustness of performances and eventually increase the vulnerability of the SC; 5) Identification of appropriate preventive or disturbance impact reductive redesign strategies; 6) Alteration of SC scenario elements as required by the selected redesign strategies and repeat VULA method for KPIs, as defined in Step 3.
Contributions of this research are listed as follows. First, we have identified emerging research areas - SC robustness, and its counterpart, vulnerability. Second, we have developed a definition of SC robustness, operationalized it, and identified and structured the relevant elements for the design of robust SCs in the form of a research framework. With this research framework, we contribute to a better understanding of the concepts of vulnerability and robustness and related issues in food SCs. Third, we identified the relationship between contextual factors of food SCs and specific DMPs used to maintain robust SC performances: characteristics of the product and the SC environment influence the selection and use of DMPs; processes and SC networks are influenced by DMPs. Fourth, we developed specific metrics for vulnerability assessments, which serve as a basis of a VULA method. The VULA method investigates different measures of the variability of both the duration of impacts from disturbances and the fluctuations in their magnitude.
With this project, we also hope to have delivered practical insights into food SC vulnerability. First, the integrated framework for the design of robust SCs can be used to guide food companies in successful disturbance management. Second, empirical findings from case studies lead to the identification of changeable characteristics of SCs that can serve as a basis for assessing where to focus efforts to manage disturbances. Third, the VULA method can help top management to get more reliable information about the “health” of the company.
The two most important research opportunities are: First, there is a need to extend and validate our findings related to the research framework and contextual factors through further case studies related to other types of (food) products and other types of SCs. Second, there is a need to further develop and test the VULA method, e.g.: to use other indicators and statistical measures for disturbance detection and SC improvement; to define the most appropriate KPI to represent the robustness of a complete SC. We hope this thesis invites other researchers to pick up these challenges and help us further improve the robustness of (food) SCs.