62 resultados para Inorganic chemistry|Chemical engineering|Materials science
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.
Resumo:
Transdermal drug delivery offers a number of advantages for the patient, due not only its non-invasive and convenient nature, but also factors such as avoidance of first pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedle arrays can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. Microneedles have been extensively investigated in recent decades for drug and vaccine delivery as well as minimally invasive patient monitoring/diagnosis. This review focuses on a range of critically important aspects of microneedle technology, namely their material composition, manufacturing techniques, methods of evaluation and commercial translation to the clinic for patient benefit and economic return. Microneedle research and development is finally now at the stage where commercialisation is a realistic possibility. However, progress is still required in the areas of scaled-up manufacture and regulatory approval.
Resumo:
A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.
Resumo:
The article covers basic inorganic chemistry of lead. As an introduction, the properties and historical uses of metallic lead are discussed, followed by aspects of lead toxicity, including the toxicity origins and effects of lead poisoning. Properties of lead as a heavy p-block element are discussed, with emphasis on the modern view of the so-called “inert pair effect”, including its origin, the influence on stability of lead oxidation states, and on the coordination chemistry of lead(II), viz., “sterically active lone pair”. This is followed by an overview of lead inorganic compounds, including halides, pseudohalides, oxides and chalcogenides, hydroxides and their chalcogenide analogs, alkoxides, oxoacids, O-donors, S- and Se-donors, Group 15 donors, compounds with lead-transition metal bonds, and finally metallic clusters (Zintl phases). This is by no means a comprehensive review, rather compounds representative for each class were presented. In most sections, structural aspects of each class of compounds are discussed, followed by applications, with the focus on modern uses in material science.
Resumo:
Models and software products have been developed for modelling, simulation and prediction of different correlations in materials science, including 1. the correlation between processing parameters and properties in titanium alloys and ?-titanium aluminides; 2. time–temperature–transformation (TTT) diagrams for titanium alloys; 3. corrosion resistance of titanium alloys; 4. surface hardness and microhardness profile of nitrocarburised layers; 5. fatigue stress life (S–N) diagrams for Ti–6Al–4V alloys. The programs are based on trained artificial neural networks. For each particular case appropriate combination of inputs and outputs is chosen. Very good performances of the models are achieved. Graphical user interfaces (GUI) are created for easy use of the models. In addition interactive text versions are developed. The models designed are combined and integrated in software package that is built up on a modular fashion. The software products are available in versions for different platforms including Windows 95/98/2000/NT, UNIX and Apple Macintosh. Description of the software products is given, to demonstrate that they are convenient and powerful tools for practical applications in solving various problems in materials science. Examples for optimisation of the alloy compositions, processing parameters and working conditions are illustrated. An option for use of the software in materials selection procedure is described.