168 resultados para Inhalation exposure
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Background Person-to-person transmission of respiratory pathogens, including Pseudomonas aeruginosa, is a challenge facing many cystic fibrosis (CF) centres. Viable P aeruginosa are contained in aerosols produced during coughing, raising the possibility of airborne transmission.
Methods Using purpose-built equipment, we measured viable P aeruginosa in cough aerosols at 1, 2 and 4 m from the subject (distance) and after allowing aerosols to age for 5, 15 and 45 min in a slowly rotating drum to minimise gravitational settling and inertial impaction (duration). Aerosol particles were captured and sized employing an Anderson Impactor and cultured using conventional microbiology. Sputum was also cultured and lung function and respiratory muscle strength measured.
Results Nineteen patients with CF, mean age 25.8 (SD 9.2) years, chronically infected with P aeruginosa, and 10 healthy controls, 26.5 (8.7) years, participated. Viable P aeruginosa were detected in cough aerosols from all patients with CF, but not from controls; travelling 4 m in 17/18 (94%) and persisting for 45 min in 14/18 (78%) of the CF group. Marked inter-subject heterogeneity of P aeruginosa aerosol colony counts was seen and correlated strongly (r=0.73-0.90) with sputum bacterial loads. Modelling decay of viable P aeruginosa in a clinic room suggested that at the recommended ventilation rate of two air changes per hour almost 50 min were required for 90% to be removed after an infected patient left the room.
Conclusions: Viable P aeruginosa in cough aerosols travel further and last longer than recognised previously, providing additional evidence of airborne transmission between patients with CF.
Resumo:
BACKGROUND: Pseudomonas aeruginosa is the most common bacterial pathogen in patients with cystic fibrosis (CF). Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. It was hypothesised that subjects with CF produce viable respirable bacterial aerosols with coughing.
METHODS: A cross-sectional study was undertaken of 15 children and 13 adults with CF, 26 chronically infected with P aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different sizes and culture of viable Gram-negative non-fermentative bacteria. Cough aerosols were collected during 5 min of voluntary coughing and during a sputum induction procedure when tolerated. Standardised quantitative culture and genotyping techniques were used.
RESULTS: P aeruginosa was isolated in cough aerosols of 25 subjects (89%), 22 of whom produced sputum samples. P aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In four cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles <or=3.3 microm aerodynamic diameter. P aeruginosa, Burkholderia cenocepacia, Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (p = 0.003). The magnitude of cough aerosols was associated with higher forced expiratory volume in 1 s (r = 0.45, p = 0.02) and higher quantitative sputum culture results (r = 0.58, p = 0.008).
CONCLUSION: During coughing, patients with CF produce viable aerosols of P aeruginosa and other Gram-negative bacteria of respirable size range, suggesting the potential for airborne transmission.
Resumo:
RATIONALE: Cigarette smoke exposure is associated with an increased risk of the acute respiratory distress syndrome (ARDS); however, the mechanisms underlying this relationship remain largely unknown.
OBJECTIVE: To assess pathways of lung injury and inflammation in smokers and non-smokers with and without lipopolysaccharide (LPS) inhalation using established biomarkers.
METHODS: We measured plasma and bronchoalveolar lavage (BAL) biomarkers of inflammation and lung injury in smokers and non-smokers in two distinct cohorts of healthy volunteers, one unstimulated (n=20) and one undergoing 50 μg LPS inhalation (n=30).
MEASUREMENTS AND MAIN RESULTS: After LPS inhalation, cigarette smokers had increased alveolar-capillary membrane permeability as measured by BAL total protein, compared with non-smokers (median 274 vs 208 μg/mL, p=0.04). Smokers had exaggerated inflammation compared with non-smokers, with increased BAL interleukin-1β (p=0.002), neutrophils (p=0.02), plasma interleukin-8 (p=0.003), and plasma matrix metalloproteinase-8 (p=0.006). Alveolar epithelial injury after LPS was more severe in smokers than non-smokers, with increased plasma (p=0.04) and decreased BAL (p=0.02) surfactant protein D. Finally, smokers had decreased BAL vascular endothelial growth factor (VEGF) (p<0.0001) with increased soluble VEGF receptor-1 (p=0.0001).
CONCLUSIONS: Cigarette smoke exposure may predispose to ARDS through an abnormal response to a 'second hit,' with increased alveolar-capillary membrane permeability, exaggerated inflammation, increased epithelial injury and endothelial dysfunction. LPS inhalation may serve as a useful experimental model for evaluation of the acute pulmonary effects of existing and new tobacco products.
Resumo:
This study examined the effect of exogenous benzo[ a ]pyrene (BaP), an important constituent of cigarette smoke, on cultured bovine retinal pigment epithelial (RPE) cells. Evidence is presented for its metabolic conversion into benzo[ a ]pyrene diol epoxide (BPDE) and the consequent formation of potentially cytotoxic nucleobase adducts in DNA. Cultured RPE cells were treated with BaP at concentrations in the range of 0–100 µm. The presence of BaP was found to cause inhibition of cell growth and replication. BaP induced the expression of a phase I drug metabolizing enzyme which was identified as cytochrome P450 1A1 (CYP 1A1) by RT–PCR and by Western blotting. Coincident with the increased expression of CYP 1A1, covalent adducts between the mutagenic metabolite BPDE and DNA could be detected within RPE cells by immunocytochemical staining. Additional support for their formation was afforded by nuclease P1 enhanced 32P-postlabelling assays on cellular DNA. Single-cell gel electrophoresis (comet) assays showed that exposure of RPE cells to BaP rendered them markedly more susceptible to DNA damage induced by broad band UVB or blue light laser irradiation. In the case of UVB, this is consistent with the photosensitization of DNA cleavage by nucleobase adducts of BPDE. Collectively, these findings imply that BaP has a significant impact on RPE cell pathophysiology and suggest mechanisms whereby exposure to cigarette smoke might cause RPE dysfunction and cell death, thus possibly contributing to degenerative disorders of the retina.
Exposure to the “Troubles” in Northern Ireland influences the clinical presentation of schizophrenia
Resumo:
Introduction: This study investigates the effect of exposure to "The Troubles" (the period of civil unrest from 1968 onwards) in Northern Ireland on symptomatology in people with schizophrenia.
Method: Eighty-two participants were assessed on a number of psychiatric rating scales and on measures of trauma, including an instrument designed to assess exposure to "Troubles"-related trauma.
Results: People with schizophrenia and a history of exposure to "The Troubles" had significantly higher levels of anxiety, depression, dissociative symptoms and number of admissions compared to those patients with no such exposure.
Discussion: "Troubles"-related trauma has a direct effect on the presentation of schizophrenia in Northern Ireland. Specific therapeutic intervention may be required in order to help patients come to terms with their experiences. © 2008 Elsevier B.V. All rights reserved.