53 resultados para Independent Order of Odd-fellows. Daughters of Rebecca. Illinois.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of our study was to assess the importance of the CXC chemokine and interleukin (IL)-8 in promoting the transition of prostate cancer (CaP) to the androgen-independent state. Stimulation of the androgen-dependent cell lines, LNCaP and 22Rv1, with exogenous recombinant human interleukin-8 (rh-IL-8) increased androgen receptor (AR) gene expression at the messenger RNA (mRNA) and protein level, assessed by quantitative polymerase chain reaction and immunoblotting, respectively. Using an androgen response element-luciferase construct, we demonstrated that rh-IL-8 treatment also resulted in increased AR transcriptional activity in both these cell lines, and a subsequent upregulation of prostate-specific antigen and cyclin-dependent kinase 2 mRNA transcript levels in LNCaP cells. Blockade of CXC chemokine receptor-2 signaling using a small molecule antagonist (AZ10397767) attenuated the IL-8-induced increases in AR expression and transcriptional activity. Furthermore, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, coadministration of AZ10397767 reduced the viability of LNCaP and 22Rv1 cells exposed to bicalutamide. Our data show that IL-8 signaling increases AR expression and promotes ligand-independent activation of this receptor in two androgen-dependent cell lines, describing two mechanisms by which this chemokine may assist in promoting the transition of CaP to the androgen-independent state. In addition, our data show that IL-8-promoted regulation of the AR attenuates the effectiveness of the AR antagonist bicalutamide in reducing CaP cell viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potential explanatory variables often co-vary in studies of species richness. Where topography varies within a survey it is difficult to separate area and habitat-diversity effects. Topographically complex surfaces may contain more species due to increased habitat diversity or as a result of increased area per se. Fractal geometry can be used to adjust species richness estimates to control for increases in area on complex surfaces. Application of fractal techniques to a survey of rocky shores demonstrated an unambiguous area-independent effect of topography on species richness in the Isle of Man. In contrast, variation in species richness in south-west England reflected surface availability alone. Multivariate tests and variation in limpet abundances also demonstrated regional variation in the area-independent effects of topography. Community composition did not vary with increasing surface complexity in south-west England. These results suggest large-scale gradients in the effects of heterogeneity on community processes or demography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four studies are reported that employed an object location task to assess temporal-causal reasoning. In Experiments 1-3, successfully locating the object required a retrospective consideration of the order in which two events had occurred. In Experiment 1, 5- but not 4-year-olds were successful; 4-year-olds also failed to perform at above-chance levels in modified versions of the task in Experiments 2 and 3. However, in Experiment 4, 3-year-olds were successful when they were able to see the object being placed first in one location and then in the other, rather than having to consider retrospectively the sequence in which two events had happened. The results suggest that reasoning about the causal significance of the temporal order of events may not be fully developed before 5 years. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.How much should an individual invest in reproduction as it grows older? Answering this question involves determining whether individuals measure their age as the time left for future reproduction or as the rate of deterioration in their state. Theory suggests that in the former case individuals should increase their allocation of resources to reproduction as opportunities for future breeding dwindle, and terminally invest when they breed for the last time. In the latter case they should reduce their investment in reproduction with age, either through adaptive reproductive restraint or as a passive by-product of senescence.
2.Here we present the results of experiments on female burying beetles, Nicrophorus vespilloides, in which we independently manipulated the perceived risk of death (by activating the immune system) and the extent of deterioration in state (by changing age of first reproduction and/or prior investment in reproduction).
3.We found that the risk of death and state each independently influenced the extent of reproductive investment. Specifically, we found a state-dependent decline in reproductive investment as females grew older that could be attributed to both adaptive reproductive restraint and senescence. A perceived increase in the risk of death, induced by activation of the immune system, caused females to switch from a strategy of reproductive restraint to terminal investment. Nevertheless, absolute reproductive investment was lower in older females, indicating constraints of senescence.
4.Our results show that a decline in reproductive investment with age does not necessarily constitute evidence of reproductive senescence but can also result from adaptive reproductive restraint.
5.Our results further suggest that the extent of reproductive investment is dependent on several different intrinsic cues and that the particular blend of cues available at any given age can yield very different patterns of investment. Perhaps this explains why age-related reproductive investment patterns seen in nature are so diverse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: How migration evolved represents one of the most poignant questions in evolutionary biology. While studies on the evolution of migration in birds are well represented in the literature, migration in bats has received relatively little attention. Yet, more than 30 species of bats are known to migrate annually from breeding to non-breeding locations. Our study is the first to test hypotheses on the evolutionary history of migration in bats using a phylogenetic framework. Methods and Principal Findings: In addition to providing a review of bat migration in relation to existing hypotheses on the evolution of migration in birds, we use a previously published supertree to formulate and test hypotheses on the evolutionary history of migration in bats. Our results suggest that migration in bats has evolved independently in several lineages potentially as the need arises to track resources (food, roosting site) but not through a series of steps from short- to long-distance migrants, as has been suggested for birds. Moreover, our analyses do not indicate that migration is an ancestral state but has relatively recently evolved in bats. Our results also show that migration is significantly less likely to evolve in cave roosting bats than in tree roosting species. Conclusions and Significance: This is the first study to provide evidence that migration has evolved independently in bat lineages that are not closely related. If migration evolved as a need to track seasonal resources or seek adequate roosting sites, climate change may have a pivotal impact on bat migratory habits. Our study provides a strong framework for future research on the evolution of migration in chiropterans. © 2009 Bisson et al.