63 resultados para Income tax--Rates and tables

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (grasp) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (fac), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ~98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e.E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ~43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21≤Z≤28. The General-Purpose Relativistic Atomic Structure Package is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac Atomic R-matrix Code is used. Oscillator strengths, radiative rates, and line strengths are listed for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are given over a wide temperature range up to 107.8 K. Additionally, lifetimes are listed for all calculated levels of these ions. Finally, extensive comparisons are made with results available in the literature, as well as with our analogous calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12≤Z≤20. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are reported over a wide temperature range up to 107.4 K. Additionally, lifetimes are also listed for all calculated levels of the ions. Finally, extensive comparisons are made with results available in the literature, as well as with our parallel calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the reported results. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy levels and radiative rates have been calculated for fine-structure transitions among the lowest 89 levels of the (1s(2)) 2s(2)2p(6), 2s(2) 2p(5) 3 l, 2s(2) 2p(5) 4l, 2s2p(6) 3 l, and 2s2p(6)4l configurations of Fe XVII using the GRASP code of Dyall et al. Collision strengths have also been calculated, for transitions among the lowest 55 levels, using the recently developed Dirac atomic R-matrix code (DARC) of Norrington & Grant. The results are compared with those available in the literature, and the accuracy of the data is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a numerical and theoretical study of intense-field single-electron ionization of helium at 390 nm and 780 nm. Accurate ionization rates (over an intensity range of (0.175-34) X10^14 W/ cm^2 at 390 nm, and (0.275 - 14.4) X 10^14 W /cm^2 at 780 nm) are obtained from full-dimensionality integrations of the time-dependent helium-laser Schroedinger equation. We show that the power law of lowest order perturbation theory, modified with a ponderomotive-shifted ionization potential, is capable of modelling the ionization rates over an intensity range that extends up to two orders of magnitude higher than that applicable to perturbation theory alone. Writing the modified perturbation theory in terms of scaled wavelength and intensity variables, we obtain to first approximation a single ionization law for both the 390 nm and 780 nm cases. To model the data in the high intensity limit as well as in the low, a new function is introduced for the rate. This function has, in part, a resemblance to that derived from tunnelling theory but, importantly, retains the correct frequency-dependence and scaling behaviour derived from the perturbative-like models at lower intensities. Comparison with the predictions of classical ADK tunnelling theory confirms that ADK performs poorly in the frequency and intensity domain treated here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. In this paper we report calculations for energy levels, radiative rates, and excitation rates for transitions in O IV. Methods. The grasp (general-purpose relativistic atomic structure package) and FAC (flexible atomic code) were adopted for calculating energy levels and radiative rates, and the Dirac atomic R-matrix code (DARC) used to determine the excitation rates. Results. Oscillator strengths and radiative rates are reported for all E1, E2, M1, and M2 transitions among the lowest 75 levels of O IV. Additionally, lifetimes are reported for all levels and comparisons made with those available in the literature. Finally, effective collision strengths are reported for all transitions over a wide temperature range below 106 K. Comparisons are made with earlier results and the accuracy of the data is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. In this paper we report on calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for
transitions among the lowest 25 levels of the n ≤ 5 configurations of H-like Ar xviii.
Methods. The general-purpose relativistic atomic structure package (grasp) andDirac atomic R-matrix code (darc) are adopted for
the calculations.
Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric
quadrupole (E2), and magnetic quadrupole (M2) transitions among the 25 levels. Furthermore, collision strengths and effective
collision strengths are listed for all 300 transitions among the above 25 levels over a wide energy (temperature) range up to 800 Ryd
(107.4 K).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. In this paper we report calculations for energy levels, radiative rates and excitation rates for transitions in Ni xi.
Methods. The grasp (General-purpose Relativistic Atomic Structure Package) and fac (Flexible Atomic Code) have been adopted
for calculating energy levels and radiative rates, and the Dirac Atomic R-matrix Code (darc) has been used to determine the excitation
rates.
Results. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest
250 levels of Ni xi. Additionally, lifetimes are also reported for all levels. However, results for excitation rates are presented only for
transitions among the lowest 17 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims.
In this paper we report calculations for energy levels, radiative rates, and electron impact excitation rates for transitions in O vii.
Methods.
The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative
rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) and the
flexible atomic code (fac) are used.
Results.
Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest
49 levels of O vii. Collision strengths have been averaged over a Maxwellian velocity distribution, and the resulting effective collision
strengths are reported over a wide temperature range below 2 × 106 K. Additionally, lifetimes are also listed for all levels.
Key words.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. In this paper we report on calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 25 levels of the n $\le$ 5 configurations of H-like Fe XXVI.
Methods. The general-purpose relativistic atomic structure package (GRASP) and Dirac atomic R-matrix code (DARC) are adopted for the calculations.
Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among the 25 levels. Furthermore, collision strengths and effective collision strengths are reported for all the 300 transitions among the above 25 levels over a wide energy (temperature) range up to 1500 Ryd (107.7 K). Comparisons are made with earlier available results and the accuracy of the data is assessed.