52 resultados para In-plane

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new far-field optical microscopy capable of reaching nanometer-scale resolution is developed using the in-plane image magnification by surface plasmon polaritons. This approach is based on the optical properties of a metal-dielectric interface that may provide extremely large values of the effective refractive index neff up to 103 as seen by surface polaritons, and thus the diffraction limited resolution can reach nanometer-scale values of lambda/2neff. The experimental realization of the microscope has demonstrated the optical resolution better than 60 nm at 515 nm illumination wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of masonry infills on the in-plane behaviour of RC framed structures is a central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the literature use an equivalent strut member in order to represent the infill but, among the parameters influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is recognized but not quantified. Nevertheless a vertical load causes a non-negligible variation in the in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-jointed strut model taking into account the stiffening effect of vertical loads on the infill in the initial state. The in-plane stiffness of a range of infilled frames was evaluated using a finite element model of the frame-infill system and the cross-section of the strut equivalent to the infill was obtained for different levels of vertical loading by imposing the equivalence between the frame containing the infill and the frame containing the diagonal strut. In this way a law for identifying the equivalent strut width depending on the geometrical and mechanical characteristics of the infilled frame was generalized to consider the influence of vertical loads for use in the practical applications. The strategy presented, limited to the initial stiffness of infilled frames, is preparatory to the definition of complete non-linear cyclic laws for the equivalent strut.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The corrosion of reinforcement in bridge deck slabs has been the cause of major deterioration and high costs in repair and maintenance.This problem could be overcome by reducing the amount of reinforcement and/or altering the location.This is possible because, in addition to the strength provided by the reinforcement, bridge deck slabs have an inherent strength due to the in-plane arching forces set up as a result of restraint provided by the slab boundary conditions. This is known as arching action or Compressive Membrane Action (CMA). It has been recognised for some time that laterally restrained slabs exhibit strengths far in excess of those predicted by most design codes but the phenomenon has not been recognised by the majority of bridge design engineers. This paper presents the results of laboratory tests on fifteen reinforced concrete slab strips typical of a bridge deck slab and compares them to predicted strengths using the current codes and CMA theory. The tests showed that the strength of laterally restrained slabs is sensitive to both the degree of external lateral restraint and the concrete compressive strength.The tests particularly highlighted the benefits in strength obtained from very high strength concrete slabs. The theory extends the existing knowledge of CMA in slabs with concrete compressive strengths up to 100 N/mm[2] and promotes more economical and durable bridge deck construction by utilising the benefits of high strength concrete.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pulsed-laser deposition has been used to fabricate Au/Ba0.5Sr0.5TiO3/SrRuO3/MgO thin film capacitor structures. Crystallographic and microstructural investigations indicated that the Ba0.5Sr0.5TiO3 (BST) had grown epitaxially onto the SrRuO3 lower electrode, inducing in-plane compressive and out- of-plane tensile strain in the BST. The magnitude of strain developed increased systematically as film thickness decreased. At room temperature this composition of BST is paraelectric in bulk. However, polarization measurements suggested that strain had stabilized the ferroelectric state, and that the decrease in film thickness caused an increase in remanent polarization. An increase in the paraelectric-ferroelectric transition temperature upon a decrease in thickness was confirmed by dielectric measurements. Polarization loops were fitted to Landau-Ginzburg-Devonshire (LGD) polynomial expansion, from which a second order paraelectric-ferroelectric transition in the films was suggested at a thickness of similar to500 nm. Further, the LGD analysis showed that the observed changes in room temperature polarization were entirely consistent with strain coupling in the system. (C) 2002 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We invoke the onset of dislocations along the BaTiO3-SrTiO3 interface as reported by Wunderlich et al. to explain the non-monotonic behaviour of the dielectric permittivity as a function of superlattice periodicity and the less than four-fold in-plane symmetry at the dielectric maximum. At a periodicity of about 10/10, depending on composition and growth mechanism, several groups report a maximum of dielectric permittivity. In addition to that we observe in-plane symmetry less than tetragonal for 10/10 superlattices by HR-XRD, in contrast to initial low-resolution data from Tabata et al. thus challenging the assumption of unrelaxed strain all the way through the superlattice. The aim of this article is to link both effects to the increasing volume fraction of conducting layers close to the interface in series with the superlattice layers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The free-base form of tetra-tert-butyl porphine (TtBP), which has extremely bulky meso substituents, is severely distorted from planarity, with a ruffling angle of 65.5degrees. The resonance Raman spectrum of TtBP (lambda(ex) = 457.9 nm) and its d(2), d(8), and d(10) isotopomers have been recorded, and while the spectra show high-frequency bands similar to those observed for planar meso-substituted porphyrins, there are several additional intense bands in the low-frequency region. Density functional calculations at the B3-LYP/6-31G(d) level were carried out for all four isotopomers, and calculated frequencies were scaled using a single factor of 0.98. The single factor scaling approach was validated on free base porphine where the RMS error was found to be 14.9 cm(-1). All the assigned bands in the high-frequency (> 1000 cm(-1)) region of TtBP were found to be due to vibrations similar in character to the in-plane skeletal modes of conventional planar porphyrins. In the low-frequency region, two of the bands, assigned as nu(8) (ca. 330 cm(-1)) and nu(16) (ca. 540 cm(-1)), are also found in planar porphyrins such as tetra-phenyl porphine (TPP) and tetra-iso-propyl porphine (IPP). Of the remaining three very strong bands, the lowest frequency band was assigned as gamma(12) (pyr swivel, obsd 415 cm(-1), calcd 407 cm(-1) in do). The next band, observed at 589 cm-1 in the do compound (calcd 583 cm(-1)), was assigned as a mode whose composition is a mixture of modes that were previously labeled gamma(13) (gamma(CmCaHmCa)) andy gamma(11) (pyr fold(asym)) in NiOEP. The final strong band, observed at 744 cm(-1) (calcd 746 cm(-1)), was assigned to a mode whose composition is again a mixture of gamma(11) and gamma(13), although here it is gamma(11) rather than gamma(13) which predominates. These bands have characters and positions similar to those of three of the four porphyrin ring-based, weak bands that have previously been observed for NiTPP. In addition there are several weaker bands in the TtBP spectra that are also

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper summarises the results obtained from non-linear finite-element analysis (NLFEA) of a series of reinforced-concrete one-way slabs with various boundary conditions representative of a bridge deck slab strip in which compressive membrane action governs the structural behaviour. The application of NLFEA for the optimum analysis and design of in-plane restrained concrete slabs is explored. An accurate material model and various equation solution methods were assessed to find a suitable finite-element method for the analysis of concrete slabs in which arching action occurs. Finally, the results from the NLFEA are compared and validated with those from various experimental test data. Significantly, the numerical analysis was able to model the arching action that occurred as a result of external in-plane restraint at the supports and which enhanced the ultimate strength of the slab. The NLFEA gave excellent predictions for the ultimate load-carrying capacity and far more accurate predictions than those obtained using standard flexural or elastic theory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on chevrons (herringbonelike patterns) observed in homeotropically aligned liquid crystals with high electric conductivity. We focus our attention on two types of chevrons observed in the conduction regime. The threshold voltage and the characteristic double periodicity of chevrons (i.e., the short wavelength lambda(1) of the striated rolls and the long wavelength lambda(2) Of the chevron bands) have been measured as functions of the applied electric frequency f. With the aid of a crossed polarizer set, we have, in addition, determined the director field which shows a periodic in-plane rotation for our chevrons (with a wavelength lambda(2)) We arrived at the types of chevrons after qualitatively different bifurcation sequences with increasing voltage. The frequency dependence of lambda(2) also shows a qualitatively different behavior with respect to the two types of chevrons. The experimental results are discussed in terms of recent theoretical investigations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computer simulations of (i) a [C(12)mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiscale micro-mechanics theory is extensively used for the prediction of the material response and damage analysis of unidirectional lamina using a representative volume element (RVE). Th is paper presents a RVE-based approach to characterize the materi al response of a multi-fibre cross-ply laminate considering the effect of matrix damage and fibre-matrix interfacial strength. The framework of the homogenization theory for periodic media has been used for the analysis of a 'multi-fibre multi-layer representative volume element' (M2 RVE) representing cross-ply laminate. The non-homogeneous stress-strain fields within the M2RVE are related to the average stresses and strains by using Gauss theorem and the Hill-Mandal strain energy equivalence principle. The interfacial bonding strength affects the in-plane shear stress-strain response significantl y. The material response predicted by M2 RVE is in good agreement with the experimental results available in the literature. The maximum difference between the shear stress predicted using M2 RVE and the experimental results is ~15% for the bonding strength of 30MPa at the strain value of 1.1%