59 resultados para Impairs Endocytosis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To study the relation between visual impairment and ability to care for oneself or a dependant in older people with age related macular degeneration (AMD). Method: Cross sectional study of older people with visual impairment due to AMD in a specialised retinal service clinic. 199 subjects who underwent visual function assessment (fully corrected distance and near acuity and contrast sensitivity in both eyes), followed by completion of a package of questionnaires dealing with general health status (SF36), visual functioning (Daily Living Tasks Dependent on Vision, DLTV) and ability to care for self or provide care to others. The outcome measure was self reported ability to care for self and others. Three levels of self reported ability to care were identified—inability to care for self (level 1), ability to care for self but not others (level 2), and ability to care for self and others (level 3). Results: People who reported good general health status and visual functioning (that is, had high scores on SF36 and DLTV) were more likely to state that they were able to care for self and others. Similarly people with good vision in the better seeing eye were more likely to report ability to care for self and others. People with a distance visual acuity (DVA) worse than 0.4 logMAR (Snellen 6/15) had less than 50% probability of assigning themselves to care level 3 and those with DVA worse than 1.0 logMAR (Snellen 6/60) had a probability of greater than 50% or for assigning themselves to care level 1. Regression analyses with level of care as the dependent variable and demographic factors, DLTV subscales, and SF36 dimensions as the explanatory variables confirmed that the DLTV subscale 1 was the most important variable in the transition from care level 3 to care level 2. The regression analyses also confirmed that the DLTV subscale 2 was the most important in the transition from care level 3 to care level 1. Conclusions: Ability to care for self and dependants has a strong relation with self reported visual functioning and quality of life and is adversely influenced by visual impairment. The acuity at which the balance of probability shifts in the direction of diminished ability to care for self or others is lower than the level set by social care agencies for provision of support. These findings have implications for those involved with visual rehabilitation and for studies of the cost effectiveness of interventions in AMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Vascular repair by marrow-derived endothelial progenitor cells (EPCs) is impaired during diabetes, although the precise mechanism of this dysfunction remains unknown. The hypothesis for the study was that progressive basement membrane (BM) modification by advanced glycation end products (AGEs) contributes to impairment of EPC reparative function after diabetes-related endothelial injury.

METHODS. EPCs isolated from peripheral blood were characterized by immunocytochemistry and flow cytometry. EPC interactions on native or AGE-modified fibronectin (AGE-FN) were studied for attachment and spreading, whereas chemotaxis to SDF-1 was assessed with the Dunn chamber assay. In addition, photoreactive agent-treated monolayers of retinal microvascular endothelial cells (RMECs) produced circumscribed areas of apoptosis and the ability of EPCs to “endothelialize” these wounds was evaluated.

RESULTS. EPC attachment and spreading on AGE-FN was reduced compared with control cells (P < 0.05–0.01) but was significantly restored by pretreatment with Arg-Gly-Asp (RGD). Chemotaxis of EPCs was abolished on AGE-FN but was reversed by treatment with exogenous RGD. On wounded RMEC monolayers, EPCs showed clustering at the wound site, compared with untreated regions (P < 0.001); AGE-FN significantly reduced this targeting response (P < 0.05). RGD supplementation enhanced EPC incorporation in the monolayer, as determined by EPC participation in tight junction formation and restoration of transendothelial electric resistance (TEER).

CONCLUSIONS. AGE-modification of vascular substrates impairs EPC adhesion, spreading, and migration; and alteration of the RGD integrin recognition motif plays a key role in these responses. The presence of AGE adducts on BM compromises repair by EPC with implications for vasodegeneration during diabetic microvasculopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Downstream effects of muscarinic receptor stimulation in intestinal smooth muscle include contraction and intestinal transit. We thought to determine whether classic transient receptor potential (TRPC) channels integrate the intracellular signaling cascades evoked by the stimulated receptors and thereby contribute to the control of the membrane potential, Ca-influx, and cell responses. METHODS: We created trpc4-, trpc6-, and trpc4/trpc6-gene-deficient mice and analyzed them for intestinal smooth muscle function in vitro and in vivo. RESULTS: In intestinal smooth muscle cells TRPC4 forms a 55 pS cation channel and underlies more than 80% of the muscarinic receptor-induced cation current (mI(CAT)). The residual mI(CAT) depends on the expression of TRPC6, indicating that TRPC6 and TRPC4 determine mI(CAT) channel activity independent of other channel subunits. In TRPC4-deficient ileal myocytes the carbachol-induced membrane depolarizations are diminished greatly and the atropine-sensitive contraction elicited by acetylcholine release from excitatory motor neurons is reduced greatly. Additional deletion of TRPC6 aggravates these effects. Intestinal transit is slowed down in mice lacking TRPC4 and TRPC6. CONCLUSIONS: In intestinal smooth muscle cells TRPC4 and TRPC6 channels are gated by muscarinic receptors and are responsible for mI(CAT). They couple muscarinic receptors to depolarization of intestinal smooth muscle cells and voltage-activated Ca(2+)-influx and contraction, and thereby accelerate small intestinal motility in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Several physiological studies in recent years have convincingly demonstrated increased clearance of intravascular protein tracers by several different tissues, including the retina, during early diabetes and galactosemia in the rat. This change has been described as a consequence of increased permeation, although vascular leakage has not been demonstrated, and the fate of such tracers remains unelucidated. EXPERIMENTAL DESIGN: A pilot study in this laboratory showed no evidence of vascular leakage but suggested increased endocytosis of horseradish peroxidase (HRP) by retinal vascular endothelial cells (RVECs) in early diabetes. We therefore quantified RVEC endocytosis in normal, streptozotocin (STZ)-treated nondiabetic and STZ-diabetic rats using the design-based stereology method of "vertical sections." A duration of diabetes (6 weeks) was chosen to approximate the time period in which other workers have demonstrated increased protein permeation of the retina. RESULTS: After a 20-minute exposure to the tracer, HRP reaction product was observed in small vesicular and tubular endosomes and larger multivesicular bodies of the RVECs. Stereological analysis revealed a 6.5-fold increase in the volume of HRP-containing organelles in the RVECs of diabetic rats compared with STZ-treated nondiabetics or normal controls. None of the animals in this study showed HRP reaction product outside the retinal vascular endothelium. CONCLUSIONS: A highly significant increase in RVEC endocytosis occurs in early diabetes. Increased RVEC endocytosis may contribute to the observed clearance of intravascular protein tracers by the retina during early diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sought to determine if hyperglycaemia is responsible for increased retinal vascular endothelial-cell (RVEC) endocytosis in diabetes and to assess the role of nonenzymatic glycosylation in mediation of this novel endothelial-cell pathology. RVECs were propagated in media containing either 5 or 25 mmol/l glucose for up to 10 days after which they were exposed to the protein tracer horseradish peroxidase for 30 min. The level of RVEC endocytosis was quantified in intact cell monolayers by electron microscopic stereology, and in cell lysates by a simple spectrophotometric method. The effect of the nonenzymatic glycosylation inhibitors, aminoguanidine and D-lysine, on high-glucose medium induced changes in RVEC endocytosis was tested by inclusion of these agents in the culture medium. RVECs exposed to 25 mmol/l glucose showed a stepwise increase in endocytosis of horseradish peroxidase culminating in a two- to threefold increase after 10 days. Endocytosis returned to normal levels after a further 10 days in 5 mmol/l glucose medium. The increase in RVEC endocytosis was markedly reduced, but not completely normalised, by aminoguanidine and D-lysine. Exposure of cultured RVECs to 25 mmol/l glucose causes an increase in endocytosis of similar magnitude to that experienced by RVEC in early diabetes, and implicates hyperglycaemia in the latter situation. A significant component of the increase in RVEC endocytosis appears to be mediated by nonenzymatic glycosylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.