9 resultados para Image Classification
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Grey Level Co-occurrence Matrix (GLCM), one of the best known tool for texture analysis, estimates image properties related to second-order statistics. These image properties commonly known as Haralick texture features can be used for image classification, image segmentation, and remote sensing applications. However, their computations are highly intensive especially for very large images such as medical ones. Therefore, methods to accelerate their computations are highly desired. This paper proposes the use of programmable hardware to accelerate the calculation of GLCM and Haralick texture features. Further, as an example of the speedup offered by programmable logic, a multispectral computer vision system for automatic diagnosis of prostatic cancer has been implemented. The performance is then compared against a microprocessor based solution.
Resumo:
Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.
Resumo:
PURPOSE. To describe and classify patterns of abnormal fundus autofluorescence (FAF) in eyes with early nonexudative age-related macular disease (AMD). METHODS. FAF images were recorded in eyes with early AMD by confocal scanning laser ophthalmoscopy (cSLO) with excitation at 488 nm (argon or OPSL laser) and emission above 500 or 521 nm (barrier filter). A standardized protocol for image acquisition and generation of mean images after automated alignment was applied, and routine fundus photographs were obtained. FAF images were classified by two independent observers. The ? statistic was applied to assess intra- and interobserver variability. RESULTS. Alterations in FAF were classified into eight phenotypic patterns including normal, minimal change, focal increased, patchy, linear, lacelike, reticular, and speckled. Areas with abnormal increased or decreased FAF signals may or may not have corresponded to funduscopically visible alterations. For intraobserver variability, ? of observer I was 0.80 (95% confidence interval [CI]0.71-0.89) and of observer II, 0.74. (95% CI, 0.64-0.84). For interobserver variability, ? was 0.77 (95% CI, 0.67-0.87). CONCLUSIONS. Various phenotypic patterns of abnormal FAF can be identified with cSLO imaging. Distinct patterns may reflect heterogeneity at a cellular and molecular level in contrast to a nonspecific aging process. The results indicate that the classification system yields a relatively high degree of intra- and interobserver agreement. It may be applicable for determination of novel prognostic determinants in longitudinal natural history studies, for identification of genetic risk factors, and for monitoring of future therapeutic interventions to slow the progression of early AMD. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Blind steganalysis of JPEG images is addressed by modeling the correlations among the DCT coefficients using K -variate (K = 2) p.d.f. estimates (p.d.f.s) constructed by means of Markov random field (MRF) cliques. The reasoning of using high variate p.d.f.s together with MRF cliques for image steganalysis is explained via a classical detection problem. Although our approach has many improvements over the current state-of-the-art, it suffers from the high dimensionality and the sparseness of the high variate p.d.f.s. The dimensionality problem as well as the sparseness problem are solved heuristically by means of dimensionality reduction and feature selection algorithms. The detection accuracy of the proposed method(s) is evaluated over Memon's (30.000 images) and Goljan's (1912 images) image sets. It is shown that practically applicable steganalysis systems are possible with a suitable dimensionality reduction technique and these systems can provide, in general, improved detection accuracy over the current state-of-the-art. Experimental results also justify this assertion.
Resumo:
We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands gP1, rP1, iP1, and zP1. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.
Resumo:
Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.