13 resultados para Imãs permanentes

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunomagnetic separation (IMS) can selectively isolate and concentrate Mycobacterium bovis cells from lymph node tissue to facilitate subsequent detection by PCR (IMS-PCR) or culture (IMS-MGIT). This study describes application of these novel IMS-based methods to test for M. bovis in a survey of 280 bovine lymph nodes (206 visibly lesioned (VL), 74 non-visibly lesioned (NVL)) collected at slaughter as part of the Northern Ireland bovine TB eradication programme. Their performance was evaluated relative to culture. Overall, 174 (62.1%) lymph node samples tested positive by culture, 162 (57.8%) by IMS-PCR (targeting IS6110), and 196 (70.0%) by IMS-MGIT culture. Twelve (6.9%) of the 174 culture positive lymph node samples were not detected by either of the IMS-based methods. However, an additional 78 M. bovis positive lymph node samples (26 (12.6%) VL and 54 (73.0%) NVL) were detected by the IMS-based methods and not by culture. When low numbers of viable M. bovis are present in lymph nodes (e.g. in NVLs of skin test reactor cattle) decontamination prior to culture may adversely affect viability, leading to false negative culture results. In contrast, IMS specifically captures whole M. bovis cells (live, dead or potentially dormant) which are not subject to any deleterious treatment before detection by PCR or MGIT culture. During this study only 2.7% of NVL lymph nodes tested culture positive, whereas 73% of the same samples tested M. bovis positive by the IMS-based tests. Results clearly demonstrate that not only are the IMS-based methods more rapid but they have greater detection sensitivity than the culture approach currently used for the detection of M. bovis infection in cattle.. Adoption of the IMS-based methods for lymph node testing would have the potential to improve M. bovis detection in clinical samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute measurements have been made of single-electron charge-exchange cross sections of H+, He+, and He2+ in H2O and CO2 in the energy range 0.3-7.5 keV amu(-1). Collisions of this type occur in the interaction of solar wind ions with cometary gases and have been observed by the Giotto spacecraft using the Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during a close encounter with comet Halley in 1986. Increases in the He+ ion density, and in the He2+ to H+ density ratio were reported by Shelley et al, and Fuselier et al. and were explained by charge exchange. However, the lack of reliable cross sections for this process made interpretation of the data difficult. New cross sections are presented and discussed in relation to the Giotto observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1994, Irish cattle have been exposed to greater risks of acquiring Mycobacterium avium subspecies paratuberculosis (MAP) infection as a consequence of the importation of over 70,000 animals from continental Europe. In recent years, there has been an increase in the number of reported clinical cases of paratuberculosis in Ireland. This study examines the prevalence of factors that promote the introduction and within-herd transmission of Mycobacterium avium subspecies paratuberculosis (MAP) on selected Irish dairy farms in the Cork region, and the association between these factors and the results of MAP screening tests on milk sock filter residue (MFR). A total of 59 dairy farms, selected using non-random methods but apparently free of endemic paratuberculosis, were enrolled into the study. A questionnaire was used to collect data about risk factors for MAP introduction and transmission. The MFR was assessed on six occasions over 24 months for the presence of MAP, using culture and immunomagnetic separation prior to polymerase chain reaction (IMS-PCR). Furthermore, blood samples from all entire male and female animals over one year of age in 20 herds were tested by ELISA. Eighteen (31%) farms had operated as closed herds since 1994, 28 (47%) had purchased from multiple sources and 14 (24%) had either direct or indirect (progeny) contact with imported animals. Milk and colostrum were mixed on 51% of farms, while 88% of farms fed pooled milk. Thirty (51%) herds tested negative to MFR culture and IMS-PCR, 12 (20%) were MFR culture positive, 26 (44%) were IMS-PCR positive and seven (12%) were both culture and IMS-PCR positive. The probability of a positive MFR culture was significantly associated with reduced attendance at calving, and with increased use of individual calf pens and increased (but not significantly) if multiple suckling was practised. There was poor agreement between MFR culture and MFR IMS-PCR results, but moderate agreement between MFR culture and ELISA test results. This study highlights a lack of awareness among Irish dairy farmers about the effect of inadequate biosecurity on MAP introduction. Furthermore, within-herd transmission will be facilitated by traditional calf rearing and waste management practices. The findings of viable MAP in the presence of known transmission factors in non-clinically affected herds could be a prelude to long-term problems for the Irish cattle and agri-business generally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the development and optimization of an immunomagnetic separation (IMS) method to isolate Mycobacterium bovis cells from lymph node tissues. Gamma-irradiated whole M. bovis AF2122/97 cells and ethanol-extracted surface antigens of such cells were used to produce M. bovis-speci?c polyclonal and monoclonal antibodies in rabbits and mice. They were also used to generate M. bovis-speci?c peptide ligands by phage display biopanning. The various antibodies and peptide ligands obtained were used to coat MyOne tosyl-activated Dynabeads (Life Technologies), singly or in combination, and evaluated for IMS. Initially, M. bovis capture from Middlebrook 7H9 broth suspensions (concentration range, 10 to 105 CFU/ml) was evaluated by IMS combined with an M. bovis-speci?c touchdown PCR. IMS-PCR results and, subsequently, IMS-culture results indicated that the beads with greatest immunocapture capability for M. bovis in broth were those coated simultaneously with a monoclonal antibody and a biotinylated 12-mer peptide. These dually coated beads exhibited minimal capture (mean of 0.36% recovery) of 12 other Mycobacterium spp. occasionally encountered in veterinary tuberculosis (TB) diagnostic laboratories. When the optimized IMS method was applied to various M. bovis-spiked lymph node matrices, it demonstrated excellent detection sensitivities (50% limits of detection of 3.16 and 57.7 CFU/ml of lymph node tissue homogenate for IMS-PCR and IMS-culture, respectively). The optimized IMS method therefore has the potential to improve isolation of M. bovis from lymph nodes and hence the diagnosis of bovine tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 µm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection to accurately confirm the presence of C. jejuni. Without pre-enrichment, this method was able to detect approximately 10 CFU of C. jejuni in 1 µl of spiked feces within 3 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly functionalised ruthenium(II) tris-bipyridine receptor 1 which acts as a selective sensor for equine cytochrome c (cyt c) is shown to destabilise the native protein conformation by around 25 degrees C. Receptors 2 and 3 do not exert this effect confirming the behaviour is a specific effect of molecular recognition between 1 and cyt c, whilst the absence of a destabilising effect on 60% acetylated cyt c demonstrates the behaviour of 1 to be protein specific. Molecular recognition also modifies the conformational properties of the target protein at room temperature as evidenced by ion-mobility spectrometry (IMS) and accelerated trypsin proteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunomagnetic separation (IMS) represents a simple but effective method of selectively capturing and concentrating Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), from tissue samples. It is a physical cell separation technique that does not impact cell viability, unlike traditional chemical decontamination prior to culture. IMS is performed with paramagnetic beads coated with M. bovis-specific antibody and peptide binders. Once captured by IMS, M. bovis cells can be detected by either PCR or cultural detection methods. Increased detection rates of M. bovis, particularly from non-visibly lesioned lymph node tissues from bTB reactor animals, have recently been reported when IMS-based methods were employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The European badger (Meles meles) is a natural reservoir for Mycobacterium bovis, the causative agent of Bovine Tuberculosis, and has consequently been implicated in transmission of the disease to cattle. This study describes application of a novel M. bovis-specific immunochromatographic (lateral flow) assay in combination with immunomagnetic separation (IMS-LFD), to test badger faeces samples. In total, 441 faeces samples from badgers of unknown disease status collected from latrines at 110 badger setts throughout Northern Ireland (NI) and 100 faeces samples from badgers of known infection status from Great Britain (GB) were tested. Faeces (approx. 1g) was homogenised in 9 ml phosphate buffered saline, filtered (70 µm), and then 6-8 ml subjected to the IMS-LFD test. Residual clarified faecal homogenates were subjected to automated IMS followed by MGIT™ liquid culture (AIMS-MGIT™ culture) and qPCR (AIMS-qPCR). Evidence for the presence of M. bovis was obtained for 78 (18%), 61 (14%) and 140 (32%) of 441 NI badger faeces samples, and 10 (10%), 41 (41%) and 56 (56%) of 100 GB badger faeces samples, by IMS-LFD, AIMS-MGIT culture and AIMS-qPCR tests, respectively. The IMS-LFD test was less sensitive than AIMS-qPCR for detection of M. bovis and was, therefore, detecting badgers shedding high numbers of M. bovis in their faeces only. However, these ‘super shedders’ may be primarily responsible for the spread of Bovine Tuberculosis so are, therefore, an important target. This non-invasive test could form the basis of a field surveillance tool to indicate infected badger groups which are actively spreading M. bovis.