2 resultados para IR spectrum

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a near-infrared (near-IR) spectrum of the nearby radio galaxy PKS 1549-79 (z = 0.153). These data were taken with the aim of testing the idea that this object contains a quasar nucleus that is moderately extinguished, despite evidence that its radio jet points close to our line of sight. We detect broad Paalpha emission (FWHM 1745 +/- 40 km s(-1)), relatively bright continuum emission, and a continuum slope consistent with a reddened quasar spectrum (3.1 <A(V) <7.3), all emitted by an unresolved point source. Therefore we conclude that we have, indeed, detected a hidden quasar nucleus in PKS 1549-79. Combined with previous results, these observations are consistent with the idea that PKS 1549-79 is a young radio source in which the cocoon of debris left over from the triggering events has not yet been swept aside by circumnuclear outflows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present optical (UBVRI) and near-IR (YJHK) photometry of the normal Type Ia supernova (SN) 2004S. We also present eight optical spectra and one near-IR spectrum of SN 2004S. The light curves and spectra are nearly identical to those of SN 2001el. This is the first time we have seen optical and IR light curves of two Type Ia SNe match so closely. Within the one parameter family of light curves for normal Type Ia SNe, that two objects should have such similar light curves implies that they had identical intrinsic colors and produced similar amounts of Ni-56. From the similarities of the light-curve shapes we obtain a set of extinctions as a function of wavelength that allows a simultaneous solution for the distance modulus difference of the two objects, the difference of the host galaxy extinctions, and RV. Since SN 2001el had roughly an order of magnitude more host galaxy extinction than SN 2004S, the value of R-V = 2.15(-0.22)(+0.24) pertains primarily to dust in the host galaxy of SN 2001el. We have also shown via Monte Carlo simulations that adding rest-frame J-band photometry to the complement of BVRI photometry of Type Ia SNe decreases the uncertainty in the distance modulus by a factor of 2.7. A combination of rest-frame optical and near-IR photometry clearly gives more accurate distances than using rest-frame optical photometry alone.