19 resultados para INDENTATION

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that TBMs are nowadays used for long Trans-Alpine tunnels, the
understanding of rock breaking and chipping due to TBM cutter disks mechanism, for deep tunnelling operations, becomes very interesting. In this paper, the results from carried out laboratory tests that simulate the disk cutter action at the rock tunnel face by means of an indentation tool, acting on a rock
specimen with proper size, and the related three-dimensional and two-dimensional numerical modelling are proposed. The developed numerical models simulate the different test conditions (applied load, boundary conditions) allowing the analysis of the stresses distributions along possible breaking planes.
The influence of a confinement-free area on one side of the specimen, simulating the formation of a groove near the tool, is pointed out.
The obtained results from numerical modelling put in evidence a satisfactory agreement with the experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus are small, vibroid, predatory bacteria that grow within the periplasmic space of a host Gram-negative bacterium. The intermediate-filament (IF)-like protein crescentin is a member of a broad class of IF-like, coiled-coil-repeat-proteins (CCRPs), discovered in Caulobacter crescentus, where it contributes to the vibroid cell shape. The B. bacteriovorus genome has a single ccrp gene encoding a protein with an unusually long, stutter-free, coiled-coil prediction; the inactivation of this did not alter the vibriod cell shape, but caused cell deformations, visualized as chiselled insets or dents, near the cell poles and a general 'creased' appearance, under the negative staining preparation used for electron microscopy, but not in unstained, frozen, hydrated cells. Bdellovibrio bacteriovorus expressing 'teal' fluorescent protein (mTFP), as a C-terminal tag on the wild-type Ccrp protein, did not deform under negative staining, suggesting that the function was not impaired. Localization of fluorescent Ccrp-mTFP showed some bias to the cell poles, independent of the cytoskeleton, as demonstrated by the addition of the MreB-specific inhibitor A22. We suggest that the Ccrp protein in B. bacteriovorus contributes as an underlying scaffold, similar to that described for the CCRP protein FilP in Streptomyces coelicolor, preventing cellular indentation, but not contributing to the vibroid shape of the B. bacteriovorus cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a study carried out to assess the impact of the use of self-compacting concrete (SCC) on bond and interfacial properties around steel reinforcement in practical concrete element. The pull-out tests were carried out to determine bond strength between reinforcing steel bar and concrete, and the depth-sensing nano-indentation technique was used to evaluate the elastic modulus and micro-strength of the interracial transition zone (ITZ) around steel reinforcement. The bond and interracial properties around deformed steel bars in different SCC mixes with strength grades of 35 MPa and 60 MPa (C35, C60) were examined together with those in conventional vibrated reference concrete with the same strength grades. The results showed that the maximum bond strength decreased when the diameter of the steel bar increased from 12 to 20 mm. The normalised bond strengths of the SCC mixes were found to be about 10-40% higher than those of the reference mixes for both bar diameters (12 and 20 mm). The study of the interfacial properties revealed that the elastic modulus and the micro-strength of the ITZ were lower on the bottom side of a horizontal steel bar than on the top side, particularly for the vibrated reference concrete. The difference of ITZ properties between top and bottom side of the horizontal steel bar appeared to be less pronounced for the SCC mixes than for the corresponding reference mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r(s) >= 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An intralaminar damage model, based on a continuum damage mechanics approach, is presented to model the damage mechanisms occurring in carbon fibre composite structures incorporating fibre tensile and compressive breakage, matrix tensile and compressive fracture, and shear failure. The damage model, together with interface elements for capturing interlaminar failure, is implemented in a finite element package and used in a detailed finite element model to simulate the response of a stiffened composite panel to low-velocity impact. Contact algorithms and friction between delaminated plies were included, to better simulate the impact event. Analyses were executed on a high performance computer (HPC) cluster to reduce the actual time required for this detailed numerical analysis. Numerical results relating to the various observed interlaminar damage mechanisms, delamination initiation and propagation, as well as the model’s ability to capture post-impact permanent indentation in the panel are discussed. Very good agreement was achieved with experimentally obtained data of energy absorbed and impactor force versus time. The extent of damage predicted around the impact site also corresponded well with the damage detected by non destructive evaluation of the tested panel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Persistent or recurrent macular-sparing subretinal fluid (SRF) can sometimes occur following scleral buckling procedures. Observation and reoperation have been used in the management of such cases. Demarcation laser therapy (DLT) has been used to treat macular-sparing retinal detachments in the context of cytomegalovirus retinitis and as primary treatment for selected rhegmatogenous retinal detachments. There are, however, scarce data in the literature regarding its use following primary scleral buckling procedures. The current study explores the use of DLT under the latter circumstances. Methods: The medical records of all consecutive patients with persistent SRF sparing the macula following primary rhegmatogenous retinal detachment repair using a scleral buckling procedure were retrospectively reviewed. Only those patients in whom the breaks were localised to the area of indentation and, thus, seemed to be well supported by the buckle were included. Demographics, clinical characteristics of the retinal detachment prior to scleral buckling, extension of the residual SRF observed postoperatively, details of the laser procedure, anatomical and functional outcomes and complications were evaluated. Results: Seven patients, all females, with a mean age of 47.9 years (range: 20-81) were included in the study. The retinal detachments were superior (n=3), inferior (n=3) and subtotal, affecting both superior and inferior retina (n=1). Scleral buckling procedures were used to treat the retinal detachments in all cases. Following demarcation laser therapy, the area of SRF remained stable in two patients, and flattened in four. In one patient, extension of SRF occurred requiring further surgery. Conclusions: Demarcation laser therapy appears to be a reasonable option in the management of patients with persistent or recurrent SRF sparing the macula following scleral buckling surgery. © Springer-Verlag 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element model of a single cell was created and used to investigate the effects of ageing on biophysical stimuli generated within a cell. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina, and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of Atomic Force Microscopy (AFM) indentation was performed and results showed a force/indentation simulation with the range of experimental results.

Ageing was simulated by both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age). Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain compared to young cells, but the difference, surprisingly, is very small and would not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models whose force/displacement behaviour is within experimentally observed ranges. the models suggest only small, though possibly physiologically-significant, differences in internal biophysical stimuli between normal and aged cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon carbide (SiC) is an important orthopaedic material due to its inert nature and superior mechanical and tribological properties. Some of the potential applications of silicon carbide include coating for stents to enhance hemocompatibility, coating for prosthetic-bearing surfaces and uncemented joint prosthetics. This study is the first to explore nanomechanical response of single crystal 4H-SiC through quasistatic nanoindentation. Displacement controlled quasistatic nanoindentation experiments were performed on single crystal 4H-SiC specimen using a blunt Berkovich indenter (300 nm tip radius) at extremely fine indentation depths of 5 nm, 10 nm, 12 nm, 20 nm, 25 nm and 50 nm. Load-displacement curve obtained from the indentation experiments showed yielding or incipient plasticity in 4H-SiC typically at a shear stress of about 21 GPa (~an indentation depth of 33.8 nm) through a pop-in event. An interesting observation was that the residual depth of indent showed three distinct patterns: (i) Positive depth hysteresis above 33 nm, (ii) no depth hysteresis at 12 nm, and (iii) negative depth hysteresis below 12 nm. This contrasting depth hysteresis phenomenon is hypothesized to originate due to the existence of compressive residual stresses (upto 143 MPa) induced in the specimen by the polishing process prior to the nanoindentation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of nanomechanical response of iron carbides is important because presence of iron carbides greatly influences the performance and longevity of steel components. This work contributes to the literature by exploring nanoindentation of nanocrystalline Fe3C and tetrahedral-Fe4C using molecular dynamics simulation. The chemical interactions of iron and carbon were described through an analytical bond order inter-atomic potential (ABOP) energy function. The indentations were performed at an indentation speed of 50 m/sec and a repeat trial was performed at 5 m/sec. Load-displacement (P-h) curve for both these carbides showed residual indentation depth and maximum indentation depth (hf/hmax) ratio to be higher than 0.7 i.e. a circumstance where Oliver and Pharr method was not appropriate to be applied to evaluate the material properties. Alternate evaluation revealed Fe3C to be much harder than Fe4C. Gibbs free energy of formation and radial distribution function, coupled with state of the average local temperature and von Mises stresses indicate the formation of a new phase of iron-carbide. Formation of this newer phase was found to be due to deviatoric strain rather than the high temperature induced in the substrate during nanoindentation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents novel advances on the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: Indentation of polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical (arc) indenter, and indentation of a single crystal silicon substrate with these two indenters. The simulation results reveal that high pressure phase transformation (HPPT) in silicon (Si-I to Si-II phase transformation) occurred in all cases, however, its extent and the manner in which it occurred differed significantly between polycrystalline silicon and single crystal silicon, and was the main driver of differences in nanoindentation deformation behaviour between the two types of silicon. An interesting observation was that in polycrystalline silicon, the HPPT was observed to occur preferentially along the grain boundaries than across the grain boundaries. An automated dislocation extraction algorithm (DXA) revealed no dislocations in the deformation zone, suggesting HPPT to be the primary mechanism in inducing plasticity in silicon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to combine the mechanical properties of yttria-stabilised zirconia (ZrO2-3 mol% Y2O3; code Y-ZrO2) with the bioactivity of titania (TiO2), Y-ZrO2-TiO2, green compacts with 0-40vol.% TiO2 were sintered at 1300, 1400, and 1500degreesC for 4h, respectively. The microstructural features such as grains, pores, and phases were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDX). The mechanical properties such as hardness and toughness were also determined using the methods of Vickers indentation and Knoop indentation. All the composites showed the major tetragonal Y-ZrO2 phase regardless of the content of the added TiO2. However, rutile TiO2 phase was obtained at 1300degreesC, whereas zirconium titanate (ZrTi04) phase was found at 1400 and 1500degreesC. The Y-ZrO2-ZrTiO4 Composites sintered at 1500degreesC showed relatively high hardness (860-1000 kg/mm(2)) and toughness (4.0-4.5 MPa m(0.5)), whereas the Y-ZrO2-TiO2 composites sintered at 1300degreesC had slightly lower hardness (720-950kg/mm(2)) and fracture toughness (3.1-3.3 MPa m(0.5)). (C) 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore. this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms-nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (similar to 4 mu m) and Al(2)O(3) (similar to 1 mu m), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.