15 resultados para ILLINOIS HIGH OIL

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the collapse of the Soviet Union in 1991, the newly independent oil-rich country of Kazakhstan has become a major recipient of foreign direct investment (FDI). Although international organisations such as the IMF and UNCTAD have claimed that FDI could be considered an engine in the transition from state socialism and as a powerful force for integration of this region into the global economy; this investment also poses significant risks to Kazakhstan. These risks fall into two broad categories: The first category can be broadly described as issues associated with the “resource curse” or the “Dutch Disease”. The term Dutch Disease describes a situation where booming demand in oil exporting countries, due to high oil revenues, leads to shift of an economy’s productive resources from the tradeable sector to the non-tradeable sector. The second category is associated with the over-dependency of oil exporting countries on a relatively small number of large multinational corporations (MNCs). This over-dependency can lead to a situation where licenses and concessions are granted at less favourable conditions than if they were auctioned in an efficient market. Examining the licensing policy of the Kazakhstani Energy and Mineral Resource Ministry, this paper notes that the latter issue of over-dependency has become less of a risk due to deliberate efforts to diversify investment relationships. Notwithstanding this situation there is some evidence that it remains difficult for oil exporting nations such as Kazakhstan to ensure that oil revenues are channelled into sustainable economic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines. Under these conditions, the effects of poisoning are much more significant to catalyst durability, particularly for crankcase scavenged derivatives which allow considerable quantities of oil to escape into the exhaust in a neat, or partially burned form. In this paper the effects of oil-derived sulphur on catalyst performance are examined using specialised test apparatus. The oil used throughout the study was formulated specifically for a two-stroke engine fitted with direct in-cylinder fuel injection. The sulphur content of this oil was 0.21% by mass and particular attention was paid to the role of this element in the resulting deactivation. The catalyst was also designed for two-stroke applications and contained a high palladium loading of 300g/ft3 (28g/l) to prolong the life of the catalyst. It was found that the sulphur caused permanent deactivation of the CO reaction and increased the light-off temperature by around 40oC after oiling for 60 hours. This deactivation was progressive and led to a reduction in surface area of the washcoat, particularly in the micropores of around 5Å diameter. By using a validated catalyst model the change in surface area of the precious metal was estimated. It was found that the simulated palladium surface area had to be reduced by a factor of around 7.5 to produce the light-off temperature of the deactivated catalyst. Conversely, the light-off temperature of the C3H6 reaction was barely affected by the deactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present model atmosphere analyses of high resolution Keck and VLT optical spectra for three evolved stars in globular clusters, viz. ZNG-1 in M 10, ZNG-1 in M 15 and ZNG-1 in NGC 6712. The derived atmospheric parameters and chemical compositions confirm the programme stars to be in the post- Asymptotic Giant Branch (post-AGB) evolutionary phase. Differential abundance analyses reveal CNO abundance patterns in M 10 ZNG-1, and possibly M 15 ZNG-1, which Suggest that both objects may have evolved off the AGB before the third dredge-up occurred. The abundance pattern of these stars is similar to the third class of optically, bright post-AGB objects discussed by van Winckel (1997). Furthermore, M 10 ZNG-1 exhibits a large C underabundance (with Delta[C/O] similar to -1.6 dex), typical of other hot post-AGB objects. Differential Delta[alpha/Fe] abundance ratios in both M 10 ZNG-1 and NGC 6712 ZNG-1 are found to be approximately 0.0 dex, with the Fe abundance of the former being in disagreement with the cluster metallicity of M 10. Given that the Fe absorption features in both M 10 ZNG-1 and NGC6712 ZNG-1 are well observed and reliably modelled, we believe that these differential Fe abundance estimates to be secure. However, our Fe abundance is difficult to explain in terms of previous evolutionary processes that Occur oil both the Horizontal Branch and the AGB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planar metarnaterial Surfaces with negative reflection phase values are proposed as ground planes in a high-gain resonant cavity antenna configuration. The antenna is formed by the metarnaterial ground plane (MGP) and a superimposed metallodielectric electromagnetic band gap (MEBG) array that acts as a partially reflective surface (PRS). A single dipole positioned between the PRS and the ground IS utilised as the excitation. Ray analysis is employed to describe the functioning of the antennas and to qualitatively predict the effect of the MGP oil the antenna performance. By employing MGPs with negative reflection phase values, the planar antenna profile is reduced to subwavelength values (less than lambda/6) whilst maintaining high directivity. Full-wave simulations have been carried out with commercially available software (Microstripes (TM)). The effect of the finite PRS size on the antenna radiation performance (directivity and sidelobe level) is studied. A prototype has been fabricated and tested experimentally in order to validate the predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applications such as soil, rock and oil-well grouting all require enormous amounts of cement and are good examples of areas where a high volume of fly ash could partially replace cement to produce low-cost, environmentally safe and durable concrete. There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater grouts such as washout resistance and compressive strength. This paper presents statistical models developed using a fractorial design which was carried out to model the influence of key parameters on properties affecting the performance of underwater grout. Such responses of fluidity included mini-slump and flow time measured by Marsh cone, washout resistance, unit weight and compressive strength. The models are valid for mixes with 0.40 to 0.60 water-to-cementitious materials ratio, 0.02 to 0.08% of anti-washout admixture, by mass of binder, and 0.6 to 1.8% of superplasticizer, by mass of cementitious materials. The grout was made with 50% of pulverized-fuel ash replacement, by mass ofcementitious materials. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper highlighted the influence of W/CM and dosage of antiwashout admixture and superplasticizer on fluidity, washout resistance and compressive strength and attempted also to demonstrate the usefulness of the models to improve understanding of trade-offs between parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of high-pressure processing (HPP) in conjunction with an essential oil-based active packaging on the surface of ready-to-eat (RTE) chicken breast were investigated as post-processing listericidal treatment. Three different treatments were used, and all samples were vacuum packed: (i) HPP at 500. MPa for 1. min (control), (ii) active packaging based on coriander essential oil, and (iii) active packaging and HPP. When applied individually, active packaging and pressurisation delayed the growth of Listeria monocytogenes. The combination of HPP and active packaging resulted in a synergistic effect reducing the counts of the pathogen below the detection limit throughout 60. days storage at 4. °C. However, when these samples were stored at 8. °C, growth did occur, but again a delay in growth was observed. The effects on colour and lipid oxidation were also studied during storage and were not significantly affected by the treatments. Active packaging followed by in-package pressure treatment could be a useful approach to reduce the risk of L. monocytogenes in cooked chicken without impairing its quality. Industrial relevance: Ready-to-eat products are of great economic importance to the industry. However, they have been implicated in several outbreaks of listeriosis. Therefore, effective ways to reduce the risk from this pathogenic microorganism can be very attractive for manufacturers. This study showed that the use of active packaging followed by HPP can enhance the listericidal efficiency of the treatment while using lower pressure levels, and thus having limited effects on colour and lipid oxidation of RTE chicken breast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virgin olive oil is a high quality natural product obtained only by physical means. In addition to triacylglycerols it contains nutritionally important polar and non-polar antioxidant phenols and other bioactive ingredients. The polar fraction is a complex mixture of phenolic acids, simple phenols, derivatives of the glycosides oleuropein and ligstroside, lignans, and flavonoids. These compounds contribute significantly to the stability, flavor, and biological value of virgin olive. In the various stages of production, during storage and in the culinary uses, polar phenols and other valuable bioactive ingredients may be damaged. Oxidation, photo-oxidation, enzymic hydrolysis and heating at frying temperatures have a serious adverse effect. Due to the biological importance of the oil and its unique character, analytical methods have been developed to evaluate antioxidant activity or analyse complex phenol mixtures. These are based on radical scavenging assays and chromatographic techniques. Hyphenated methods are also used including liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of hydrodeoxygenation of waste cooking oil (WCO) is investigated with unsupported CoMoS catalysts. A kinetic model is established and a comprehensive analysis of each reaction pathway is carried out. The results show that hydrodecarbonylation/decarboxylation (HDC) routes are the predominant reaction pathways in the elimination of oxygen, with the rate constant three times as high as that of hydrodeoxygenation (HDO). However, the HDC activity of the CoMoS catalyst deactivates due to gradual loss of sulfur from the catalyst. HDO process is insensitive to the sulfur deficiency. The kinetic modeling shows that direct hydrodecarbonylation of fatty acids dominates the HDC routes and, in the HDO route, fatty acids are transferred to aldehydes/alcohols and then to C-18 hydrocarbons, a final product, and the reduction of acids is the rate limiting step. The HDO route via alcohols is dominant over aldehydes due to a significantly higher reaction rate constant. The difference of C-18/C-17 ratio in unsupported and supported catalysts show that a support with Lewis acid sites may play an important role in the selectivity for the hydrodeoxygenation pathways and promoting the final product quality

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a simple strategy, which is based on the idea of space confinement, for the synthesis of carbon coating on LiFePO4 nanoparticles/graphene nanosheets composites in a water-in-oil emulsion system. The prepared composite displayed high performance as a cathode material for lithium-ion battery, such as high reversible lithium storage capacity (158 mA h g-1 after 100 cycles), high coulombic efficiency (over 97%), excellent cycling stability and high rate capability (as high as 83 mA h g -1 at 60 C). Very significantly, the preparation method employed can be easily adapted and be extended as a general approach to sophisticated compositions and structures for the preparation of highly dispersed nanosized structure on graphene. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2 ng·ml- 1, and in the effective detection range 0.2 to 100 ng·ml- 1, good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotational moulding is a method to produce hollow plastic articles. Heating is normally carried out by placing the mould into a hot air oven where the plastic material in the mould is heated. The most common cooling media are water and forced air. Due to the inefficient nature of conventional hot air ovens most of the energy supplied by the oven does not go to heat the plastic and as a consequence the procedure has very long cycle times. Direct oil heating is an effective alternative in order to achieve better energy efficiency and cycle times. This research work has combined this technology with new innovative design of mould, applying the advantages of electroforming and rapid prototyping. Complex cavity geometries are manufactured by electroforming from a rapid prototyping mandrel. The approach involves conformal heating and cooling channels , where the oil flows into a parallel channel to the electroformed cavity (nickel or copper). Because of this the mould enables high temperature uniformity with direct heating and cooling of the electroformed shell, Uniform heating and cooling is important not only for good quality parts but also for good uniform wall thickness distribution in the rotationally moulded part. The experimental work with the manufactured prototype mould has enabled analysis of the thermal uniformity in the cavity, under different temperatures. Copyright © 2008 by ASME.