11 resultados para Horticultural crops

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural soils are the dominant contributor to increases in atmospheric nitrous oxide (N2O). Few studies have investigated the natural N and O isotopic composition of soil N2O. We collected soil gas samples using horizontal sampling tubes installed at successive depths under five contrasting agricultural crops (e.g., unamended alfalfa, fertilized cereal), and tropospheric air samples. Mean d 15N and d 18O values of soil N2O ranged from -28.0 to +8.9‰, and from +29.0 to +53.6‰. The mean d 15N and d 18O values of tropospheric N2O were +4.6 ± 0.7‰ and +48.3 ± 0.2‰, respectively. In general, d values were lowest at depth, they were negatively correlated to soil [N2O], and d 15N was positively correlated to d 18O for every treatment on all sampling dates. N2O from the different agricultural treatments had distinct d 15N and d 18O values that varied among sampling dates. Fertilized treatments had soil N2O with low d values, but the unamended alfalfa yielded N2O with the lowest d values. Diffusion was not the predominant process controlling N2O concentration profiles. Based on isotopic and concentration data, it appears that soil N2O was consumed, as it moved from deeper to shallower soil layers. To better assess the main process(es) controlling N2O within a soil profile, we propose a conceptual model that integrates data on net N2O production or consumption and isotopic data. The direct local impact of agricultural N2O on the isotopic composition of tropospheric N2O was recorded by a shift toward lower d values of locally measured tropospheric N2O on a day with very high soil N2O emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High levels of As in groundwater commonly found in Bangladesh and other parts of Asia not only pose a risk via drinking water consumption but also a risk in agricultural sustainability and food safety. This review attempts to provide an overview of current knowledge and gaps related to the assessment and management of these risks, including the behaviour of As in the soil-plant system, uptake, phytotoxicity, As speciation in foods, dietary habits, and human health risks. Special emphasis has been given to the situation in Bangladesh, where groundwater via shallow tube wells is the most important source of irrigation water in the dry season. Within the soil-plant system, there is a distinct difference in behaviour of As under flooded conditions, where arsenite (AsIII) predominates, and under nonflooded conditions, where arsenate (AsV) predominates. The former is regarded as most toxic to humans and plants. Limited data indicate that As-contaminated irrigation water can result in a slow buildup of As in the topsoil. In some cases the buildup is reflected by the As levels in crops, in others not. It is not yet possible to predict As uptake and toxicity in plants based on soil parameters. It is unknown under what conditions and in what time frame As is building up in the soil. Representative phytotoxicity data necessary to evaluate current and future soil concentrations are not yet available. Although there are no indications that crop production is currently inhibited by As, long-term risks are clearly present. Therefore, with concurrent assessments of the risks, management options to further prevent As accumulation in the topsoil should already have been explored. With regard to human health, data on As speciation in foods in combination with food consumption data are needed to assess dietary exposure, and these data should include spatial and seasonal variability. It is important to control confounding factors in assessing the risks. In a country where malnutrition is prevalent, levels of inorganic As in foods should be balanced against the nutritional value of the foods. Regarding agriculture, As is only one of the many factors that may pose a risk to the sustainability of crop production. Other risk factors such as nutrient depletion and loss of organic matter also must be taken into account to set priorities in terms of research, management, and overall strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent growth in bioenergy crop cultivation, stimulated by the need to implement measures to reduce net CO emissions, is driving major land-use changes with consequences for biodiversity and ecosystem service provision. Although the type of bioenergy crop and its associated management is likely to affect biodiversity at the local (field) scale, landscape context and its interaction with crop type may also influence biodiversity on farms. In this study, we assessed the impact of replacing conventional agricultural crops with two model bioenergy crops (either oilseed rape Brassica napus or Miscanthus × giganteus) on vascular plant, bumblebee, solitary bee, hoverfly and carabid beetle richness, diversity and abundance in 50 sites in Ireland. We assessed whether within-field biodiversity was also related to surrounding landscape structure. We found that local- and landscape-scale variables correlated with biodiversity in these agricultural landscapes. Overall, the differences between the bioenergy crops and the conventional crops on farmland biodiversity were mostly positive (e.g. higher vascular plant richness in Miscanthus planted on former conventional tillage, higher solitary bee abundance and richness in Miscanthus and oilseed rape compared with conventional crops) or neutral (e.g. no differences between crop types for hoverflies and bumblebees). We showed that these crop type effects were independent of (i.e. no interactions with) the surrounding landscape composition and configuration. However, surrounding landscape context did relate to biodiversity in these farms, negatively for carabid beetles and positively for hoverflies. Although we conclude that the bioenergy crops compared favourably with conventional crops in terms of biodiversity of the taxa studied at the field scale, the effects of large-scale planting in these landscapes could result in very different impacts. Maintaining ecosystem functioning and the delivery of ecosystem services will require a greater understanding of impacts at the landscape scale to ensure the sustainable development of climate change mitigation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cultivation of genetically modified (GM) crops in the EU is highly harmonised, involving a central authorisation procedure that aims to ensure a high level of environmental and human health protection. However conflicts over authority persist and the Commission has responded to a combination of internal and external pressures with a more flexible approach to coexistence, a proposed opt-out clause and recently a promise by the head of the Commission to review the existing EU GM legislative regime, providing an opportunity to consider and suggest paths of development. In light of the significance of multilevel governance and subsidiarity for GM cultivation, this paper considers the policy-making powers of the Member States and subnational regions in this regime, focussing upon post-authorisation options in particular. A number of core mechanisms exist, including voluntary measures, safeguard clauses, coexistence measures, a proposed express opt-out and Article 4(2) TEU on ‘national identity. These mechanisms are examined in light of the goals and challenges of multilevel governance, in order to consider whether the relevant powers are located at the appropriate level. Overall, it is apparent that the developments occurring at the EU level are strengthening multilevel governance, but with significant opportunities to improve it further through focussing on the supporting roles and the regional levels in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field and market basket study (similar to 1300 samples) of locally grown fruits and vegetables from historically mined regions of southwest (SW) England (Cornwall and Devon), and as reference, a market basket study of similarly locally grown produce from the northeast (NE) of Scotland (Aberdeenshire) was conducted to determine the concentration of total and inorganic arsenic present in produce from these two geogenically different areas of the U.K. On average 98.5% of the total arsenic found was present in the inorganic form. For both the market basket and the field survey, the highest total arsenic was present in open leaf structure produce (i.e., kale, chard, lettuce, greens, and spinach) being most likely to soil/dust contamination of the open leaf structure. The concentration of total arsenic in potatoes, swedes, and carrots was lower in peeled produce compared to unpeeled produce. For baked potatoes, the concentration of total arsenic in the skin was higher compared to the total arsenic concentration of the potato flesh, this difference in localization being confirmed by laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS). For all above ground produce (e.g., apples), peeling did not have a significant effect on the concentration of total arsenic present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of genetically engineered crops is important for society: ensuring their safety for humans and the environment. Their authorization starts with a scientific step and ends with a political step. Trends in the time taken for their authorization in the European Union are that they are decreasing, but in the United States there is a break in the overall trend: initially it decreased until 1998 after which it increased.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetically engineered (GE) crops are subject to regulatory oversight to ensure their safety for humans and the environment. Their approval in the European Union (EU) starts with an application in a given Member State followed by a scientific step (risk assessment), and ends with a political decision-making step (risk management); and in the United States (US) it starts with a scientific (field trial) step and ends with a ‘bureaucratic’ decision-making step. We investigated trends for the time taken for these steps and the overall time taken for approving GE crops in the US and the EU (traders in these commodities). Results show that from 1996-2015 the overall time trend for approval in the EU decreased and then flattened off, with an overall mean completion-time of 1,763 days. In the US in 1998 there was a break in the trend of the overall approval time: Initially, from 1988 until 1997 the trend decreased with a mean approval time of 1,321 days; from 1998-2015, the trend almost stagnated with a mean approval time of 2,467 days.