31 resultados para Hormonal plasticity

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggregation of beta-amyloid to plaques in the brain is one of the hallmarks of Alzheimer disease (AD). Numerous studies have tried to elucidate to what degree amyloid peptides play a role in the neurodegenerative developments seen in AD. While most studies report an effect of amyloid on neural activity and cognitive abilities of rodents, there have been many inconsistencies in the results. This study investigated to what degree the different genetic backgrounds affect the outcome of beta-amyloid fragment (25-35) on synaptic plasticity in vivo in the rat hippocampus. Two strains, Wistar and Lister hooded rats, were tested. In addition, the effects of a strong (600 stimuli) and a weak stimulation protocol (100 stimuli) on impairments of LTP were analysed. Furthermore, since the state of amyloid aggregation appears to play a role in the induction of toxic processes, it was tested by dual polarisation interferometry to what degree and at what speed beta-amyloid (25-35) can aggregate in vitro. It was found that 100 nmol beta-amyloid (25-35) injected icv did impair LTP in Wistar rats when using the weak but not the strong stimulation protocol (P <0.001). One-hundred nano mole of the reverse sequence amyloid (35-25) had no effect. LTP in Lister Hooded rats was not impaired by amyloid at any stimulation protocol. The aggregation studies showed that amyloid (25-35) aggregated within hours, while amyloid (35-25) did not. These results show that the genetic background and the stimulation protocol are important variables that greatly influence the experimental outcome. The fact that amyloid (25-35) aggregated quickly and showed neurophysiological effects, while amyloid (35-25) did not aggregate and did not show any effects indicates that the state of aggregation plays an important role in the physiological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species relying on acoustic communication. Recent evidence suggests that some species adjust their acoustic signals to man-made noise. However, it is unknown whether these changes occur through short-term and reversible adjustments by behavioral plasticity or through long-term adaptations by evolutionary change. Using behavioral observations and playback experiments, we show that male reed buntings (Emberiza schoeniclus) adjusted their songs immediately, singing at a higher minimum frequency and at a lower rate when noise levels were high. Our data showed that these changes in singing behavior were short-term adjustments of signal characteristics resulting from behavioral plasticity, rather than a long-term adaptation. However, more males remained unpaired at a noisy location than at a quiet location throughout the breeding season. Thus, phenotypic plasticity enables individuals to respond to environmental changes, but whether these short-term adjustments are beneficial remains to be seen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyzed a mathematical model of algal-grazer dynamics, including the effect of colony formation, which is an example of phenotypic plasticity. The model consists of three variables, which correspond to the biomasses of unicellular algae, colonial algae, and herbivorous zooplankton. Among these organisms, colonial algae are the main components of algal blooms. This aquatic system has two stable attractors, which can be identified as a zooplankton-dominated (ZD) state and an algal-dominated (AD) state, respectively. Assuming that the handling time of zooplankton on colonial algae increases with the colonial algae biomass, we discovered that bistability can occur within the model system. The applicability of alternative stable states in algae-grazer dynamics as a framework for explaining the algal blooms in real lake ecosystems, thus, seems to depend on whether the assumption mentioned above is met in natural circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of eusociality is often regarded as a change of macroevolutionary proportions [1, 2]. Its hallmark is a reproductive division of labor between the members of a society: some individuals ("helpers" or "workers") forfeit their own reproduction to rear offspring of others ("queens"). In the Hymenoptera (ants, bees, wasps), there have been many transitions in both directions between solitary nesting and sociality [2-5]. How have such transitions occurred? One possibility is that multiple transitions represent repeated evolutionary gains and losses of the traits underpinning sociality. A second possibility, however, is that once sociality has evolved, subsequent transitions represent selection at just one or a small number of loci controlling developmental switches between preexisting alternative phenotypes [2, 6]. We might then expect transitional populations that can express either sociality or solitary nesting, depending on environmental conditions. Here, we use field transplants to directly induce transitions in British and Irish populations of the sweat bee Halictus rubicundus. Individual variation in social phenotype was linked to time available for offspring production, and to the genetic benefits of sociality, suggesting that helping was not simply misplaced parental care [7]. We thereby demonstrate that sociality itself can be truly plastic in a hymenopteran.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used Satellite Relay Data Loggers to obtain the first dive profiles for critically endangered leatherback turtles outside the nesting season. As individuals moved from the Caribbean out into the Atlantic, key aspects of their diving behaviour changed markedly, in line with theoretical predictions for how dive duration should vary with foraging success. In particular, in the Atlantic, where foraging success is expected to be higher, dives became much longer than in the Caribbean. The deepest-ever dive profile recorded for a reptile was obtained in the oceanic Atlantic, with a 54-min dive to 626 m on 26 August 2002. However, dives were typically much shallower (generally

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For elastoplastic particle reinforced metal matrix composites, failure may originate from interface debonding between the particles and the matrix, both elastoplastic and matrix fracture near the interface. To calculate the stress and strain distribution in these regions, a single reinforcing particle axisymmetric unit cell model is used in this article. The nodes at the interface of the particle and the matrix are tied. The development of interfacial decohesion is not modelled. Finite element modelling is used, to reveal the effects of particle strain hardening rate, yield stress and elastic modulus on the interfacial traction vector (or stress vector), interface deformation and the stress distribution within the unit cell, when the composite is under uniaxial tension. The results show that the stress distribution and the interface deformation are sensitive to the strain hardening rate and the yield stress of the particle. With increasing particle strain hardening rate and yield stress, the interfacial traction vector and internal stress distribution vary in larger ranges, the maximum interfacial traction vector and the maximum internal stress both increase, while the interface deformation decreases. In contrast, the particle elastic modulus has little effect on the interfacial traction vector, internal stress and interface deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexually selected traits are shaped by an interaction between sexual selection and other natural selection pressures in the environment. However, there is little understanding of how recent anthropogenic environmental change affects the elaboration of sexually selected traits. Most sexually selected traits are complex displays comprising multiple components that interact in a functional way, thereby affecting overall trait expression. To understand how environmental change may shape the expression of sexually selected traits, we have to consider not only (i) the phenotypic plasticity of individual components of traits but also their (ii) phenotypic integration, that is, the correlations among trait components, as well as (iii) plasticity integration, that is, the correlations among the plasticities of trait components. Here, we show that background noise is a considerable pressure in shaping a sexually selected multicomponent acoustic signal, bird song. We compared singing behavior of European robins (Erithacus rubecula) in territories that differed in levels of anthropogenic noise and conducted noise-exposure experiments to test if behavioral plasticity caused immediate changes in song components, for example, minimum frequency, song complexity, and song length. We found that song components differed in their plasticity to background noise and that plasticity integration between components may further restrict the elaboration of song. Thus, the altered expression of song components under noise exposure leads to increased phenotypic integration, which is linked with reduced song complexity. Our findings demonstrate that plasticity integration restricts the elaboration of a sexually selected trait, which raises the question of how changing environments may modify sexual selection.