7 resultados para Honeybee.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A honeybee queen normally mates with 10-20 drones, and reproductive conflicts may arise among a colony's different worker patrilines, especially after a colony has lost its single queen and the workers commence egg laying. In this study, we employed microsatellite markers to study aspects of worker reproductive competition in two queenless Africanized honeybee colonies. First, we determined whether there was a bias among worker patrilines in their maternity of drones and, second, we asked whether this bias could be attributed to differences in the degree of ovary activation of workers. Third, we relate these behavioral and physiological factors to ontogenetic differences between workers with respect to ovariole number. Workers from each of three (colony A) and one (colony B) patrilineal genotypes represented less than 6% of the worker population, yet each produced at least 13% of the drones in a colony, and collectively they produced 73% of the drones. Workers representing these genotypes also had more developed follicles and a greater number of ovarioles per ovary. Across all workers, ovariole development and number were closely correlated. This suggests a strong effect of worker genotype on the development of the ovary already in the postembryonic stages and sets a precedent to adult fertility, so that

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimentally fill knowledge gaps on honeybee pests and diseases, including 'Colony Collapse Disorder' and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e. g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, tau-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Special attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease prevention will be developed resulting in new treatments and selection tools for resistant stock. Research initiatives will be linked to various national and international ongoing European, North-and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing appreciation that hosts in natural populations are subject to infection by multiple parasite species. Yet the epidemiological and ecological processes determining the outcome of mixed infections are poorly understood. Here, we use two intracellular gut parasites (Microsporidia), one exotic and one co-evolved in the western honeybee (Apis mellifera), in an experiment in which either one or both parasites were administered either simultaneously or sequentially. We provide clear evidence of within-host competition; order of infection was an important determinant of the competitive outcome between parasites, with the first parasite significantly inhibiting the growth of the second, regardless of species. However, the strength of this ‘priority effect’ was highly asymmetric, with the exotic Nosema ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an unusual asymmetry in parasite competition that is dependent on order of infection. When incorporated into a mathematical model of disease prevalence, we find asymmetric competition to be an important predictor of the patterns of parasite prevalence found in nature. Our findings demonstrate the wider significance of complex multi-host–multi-parasite interactions as drivers of host–pathogen community structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The economically most important honey bee species, Apis mellifera, was formerly considered to be parasitized by one microsporidian, Nosema apis. Recently, [Higes, M., Martin, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93-95] and [Huang, W.-F., Jiang, J.-H., Chen, Y.-W., Wang, C.-H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30-37] used 16S (SSU) rRNA gene sequences to demonstrate the presence of Nosema ceranae in A. mellifera from Spain and Taiwan, respectively. We developed a rapid method to differentiate between N. apis and N. ceranae based on PCR-RFLPs of partial SSU rRNA. The reliability of the method was confirmed by sequencing 29 isolates from across the world (N = 9 isolates gave N. apis RFLPs and sequences, N = 20 isolates gave N. ceranae RFLPs and sequences; 100%, correct classification). We then employed the method to analyze N = 115 isolates from across the world. Our data, combined with N = 36 additional published sequences demonstrate that (i) N. ceranae most likely jumped host to A. mellifera, probably within the last decade, (ii) that host colonies and individuals may be co-infected by both microsporidia species, and that (iii) N. ceranae is now a parasite of A. mellifera across most of the world. The rapid, long-distance dispersal of N. ceranae is likely due to transport of infected honey bees by commercial or hobbyist beekeepers. We discuss the implications of this emergent pathogen for worldwide beekeeping. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Declining populations of bee pollinators are a cause of concern, with major repercussions for biodiversity loss and food security. RNA viruses associated with honeybees represent a potential threat to other insect pollinators, but the extent of this threat is poorly understood. This study aims to attain a detailed understanding of the current and ongoing risk of emerging infectious disease (EID) transmission between managed and wild pollinator species across a wide range of RNA viruses. Within a structured large-scale national survey across 26 independent sites, we quantify the prevalence and pathogen loads of multiple RNA viruses in co-occurring managed honeybee (Apis mellifera) and wild bumblebee (Bombus spp.) populations. We then construct models that compare virus prevalence between wild and managed pollinators. Multiple RNA viruses associated with honeybees are widespread in sympatric wild bumblebee populations. Virus prevalence in honeybees is a significant predictor of virus prevalence in bumblebees, but we remain cautious in speculating over the principle direction of pathogen transmission. We demonstrate species-specific differences in prevalence, indicating significant variation in disease susceptibility or tolerance. Pathogen loads within individual bumblebees may be high and in the case of at least one RNA virus, prevalence is higher in wild bumblebees than in managed honeybee populations. Our findings indicate widespread transmission of RNA viruses between managed and wild bee pollinators, pointing to an interconnected network of potential disease pressures within and among pollinator species. In the context of the biodiversity crisis, our study emphasizes the importance of targeting a wide range of pathogens and defining host associations when considering potential drivers of population decline.