5 resultados para Hirnforschung.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

When permitted access to the appropriate forms of rehabilitation, many severely affected stroke survivors demonstrate a capacity for upper limb functional recovery well in excess of that formerly considered possible. Yet, the mechanisms through which improvements in arm function occur in such profoundly impaired individuals remain poorly understood. An exploratory study was undertaken to investigate the capacity for brain plasticity and functional adaptation, in response to 12-h training of reaching using the SMART Arm device, in a group of severely affected stroke survivors with chronic upper limb paresis. Twenty-eight stroke survivors were enroled. Eleven healthy adults provided normative data. To assess the integrity of ipsilateral and contralateral corticospinal pathways, transcranial magnetic stimulation was applied to evoke responses in triceps brachii during an elbow extension task. When present, contralateral motor-evoked potentials (MEPs) were delayed and reduced in amplitude compared to those obtained in healthy adults. Following training, contralateral responses were more prevalent and their average onset latency was reduced. There were no reliable changes in ipsilateral MEPs. Stroke survivors who exhibited contralateral MEPs prior to training achieved higher levels of arm function and exhibited greater improvements in performance than those who did not initially exhibit contralateral responses. Furthermore, decreases in the onset latency of contralateral MEPs were positively related to improvements in arm function. Our findings demonstrate that when severely impaired stroke survivors are provided with an appropriate rehabilitation modality, modifications of corticospinal reactivity occur in association with sustained improvements in upper limb function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we investigated the influence of angular separation between visual and motor targets on concurrent adaptation to two opposing visuomotor rotations. We inferred the extent of generalisation between opposing visuomotor rotations at individual target locations based on whether interference (negative transfer) was present. Our main finding was that dual adaptation occurred to opposing visuomotor rotations when each was associated with different visual targets but shared a common motor target. Dual adaptation could have been achieved either within a single sensorimotor map (i.e. with different mappings associated with different ranges of visual input), or by forming two different internal models (the selection of which would be based on contextual information provided by target location). In the present case, the pattern of generalisation was dependent on the relative position of the visual targets associated with each rotation. Visual targets nearest the workspace of the opposing visuomotor rotation exhibited the most interference (i.e. generalisation). When the minimum angular separation between visual targets was increased, the extent of interference was reduced. These results suggest that the separation in the range of sensory inputs is the critical requirement to support dual adaptation within a single sensorimotor mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novice and expert jugglers employ different visuomotor strategies: whereas novices look at the balls around their zeniths, experts tend to fixate their gaze at a central location within the pattern (so-called gaze-through). A gaze-through strategy may reflect visuomotor parsimony, i.e., the use of simpler visuomotor (oculomotor and/or attentional) strategies as afforded by superior tossing accuracy and error corrections. In addition, the more stable gaze during a gaze-through strategy may result in more accurate movement planning by providing a stable base for gaze-centered neural coding of ball motion and movement plans or for shifts in attention. To determine whether a stable gaze might indeed have such beneficial effects on juggling, we examined juggling variability during 3-ball cascade juggling with and without constrained gaze fixation (at various depths) in expert performers (n = 5). Novice jugglers were included (n = 5) for comparison, even though our predictions pertained specifically to expert juggling. We indeed observed that experts, but not novices, juggled significantly less variable when fixating, compared to unconstrained viewing. Thus, while visuomotor parsimony might still contribute to the emergence of a gaze-through strategy, this study highlights an additional role for improved movement planning. This role may be engendered by gaze-centered coding and/or attentional control mechanisms in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catching a ball involves a dynamic transformation of visual information about ball motion into motor commands for moving the hand to the right place at the right time. We previously formulated a neural model for this transformation to account for the consistent leftward movement biases observed in our catching experiments. According to the model, these biases arise within the representation of target motion as well as within the transformation from a gaze-centered to a body-centered movement command. Here, we examine the validity of the latter aspect of our model in a catching task involving gaze fixation. Gaze fixation should systematically influence biases in catching movements, because in the model movement commands are only generated in the direction perpendicular to the gaze direction. Twelve participants caught balls while gazing at a fixation point positioned either straight ahead or 14 degrees to the right. Four participants were excluded because they could not adequately maintain fixation. We again observed a consistent leftward movement bias, but the catching movements were unaffected by fixation direction. This result refutes our proposal that the leftward bias partly arises within the visuomotor transformation, and suggests instead that the bias predominantly arises within the early representation of target motion, specifically through an imbalance in the represented radial and azimuthal target motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.