79 resultados para High pressure effects
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Here a self-consistent one-dimensional continuum model is presented for a narrow gap plane-parallel dc glow discharge. The governing equations consist of continuity and momentum equations for positive and negative ions and electrons coupled with Poisson's equation. A singular perturbation method is developed for the analysis of high pressure dc glow discharge. The kinetic processes of the ionization, electron attachment, and ion-ion recombination are included in the model. Explicit results are obtained for the asymptotic limits: delta=(r(D)/L)(2)--> 0, omega=(r(S)/L)(2)--> 0, where r(D) is the Debye radius, r(S) is recombination length, and L is the gap length. The discharge gap divides naturally into four layers with multiple space scales: anode fall region, positive column, transitional region, cathode fall region and diffusion layer adjacent to the cathode surface, its formation is discussed. The effects of the gas pressure, gap spacing and dc voltage on the electrical properties of the layers and its dimension are investigated. (C) 2000 American Institute of Physics. [S0021-8979(00)00813-6].
Resumo:
Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].
Resumo:
The densities of five imidazolium-based ionic liquids (ILs) (1-butyl-3-methylimidazolium tetrafluoroborate, [CiC4-Im][BF 4]; 1-butyl-3-methylimidazolium hexafluorophosphate, [CiC 4Im][PF6]; 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide, [C1C4Im][Tf 2N]; 1-ethyl-3-methylimidazoliumbis{(trifluoromethyl)sulfonyl}-imide, [C1C2Im][Tf2N]; l-ethyl-3-methylimidazolium ethylsulfate, [C1C2Im][EtSO4]) were measured as a function of temperature from (293 to 415) K and over an extended pressure range from (0.1 to 40) MPa using a vibratingtube densimeter. Knowledge of the variation of the density with temperature and pressure allows access to the mechanical coefficients: thermal expansion coefficient and isothermal compressibility. The effects of the anion and of the length of the alkyl chain on the imidazolium ring on the volumetric properties were particularly examined. The mechanical coefficients were compared with those of common organic solvents, water and liquid NaCl. Finally, a prediction model, based on an "ideal" volumetric behavior of the ILs, is proposed to allow calculation of the molar volume of imidazolium-based ionic liquids as a function of temperature. ©2007 American Chemical Society.
Resumo:
The effects of high-pressure processing (HPP) in conjunction with an essential oil-based active packaging on the surface of ready-to-eat (RTE) chicken breast were investigated as post-processing listericidal treatment. Three different treatments were used, and all samples were vacuum packed: (i) HPP at 500. MPa for 1. min (control), (ii) active packaging based on coriander essential oil, and (iii) active packaging and HPP. When applied individually, active packaging and pressurisation delayed the growth of Listeria monocytogenes. The combination of HPP and active packaging resulted in a synergistic effect reducing the counts of the pathogen below the detection limit throughout 60. days storage at 4. °C. However, when these samples were stored at 8. °C, growth did occur, but again a delay in growth was observed. The effects on colour and lipid oxidation were also studied during storage and were not significantly affected by the treatments. Active packaging followed by in-package pressure treatment could be a useful approach to reduce the risk of L. monocytogenes in cooked chicken without impairing its quality. Industrial relevance: Ready-to-eat products are of great economic importance to the industry. However, they have been implicated in several outbreaks of listeriosis. Therefore, effective ways to reduce the risk from this pathogenic microorganism can be very attractive for manufacturers. This study showed that the use of active packaging followed by HPP can enhance the listericidal efficiency of the treatment while using lower pressure levels, and thus having limited effects on colour and lipid oxidation of RTE chicken breast.
Resumo:
The effect of different pressure levels (500 and 600. MPa for 1. min at ambient temperature) on lasagne ready meal as a means of increasing the safety and shelf life during storage at refrigeration (4. °C) and abuse temperature (8. °C) was investigated. High-pressure processing (500 and 600. MPa for 1. min) was able to significantly reduce the total aerobic and lactic acid bacteria counts and prolong the microbiological shelf life of lasagne at both refrigeration and abuse temperatures. Pressure at 600. MPa was a useful tool to reduce the safety risks associated with Staphylococcus aureus and Listeria monocytogenes. However, abuse storage temperature facilitated the recovery of L. monocytogenes towards the end of storage. Organoleptic evaluation revealed that HPP did not negatively influence the quality attributes of lasagne and prolonged its organoleptic shelf life. HPP treatment can serve as a useful additional step to enhance safety and increase the shelf life of multicomponent ready meals, such as lasagne. Industrial relevance: The ready meals sector of the food industry has been experiencing increasing growth in the past years. This comprehensive study explored the effects of HPP on a very popular multicomponent ready meal i.e., lasagne after treatment and during storage. The results showed that HPP can be successfully applied to lasagne ready meals to decrease the risk from S. aureus and L. monocytogenes and also significantly prolong its shelf life without affecting its organoleptic properties. The utilisation of HPP by the industry can significantly increase safety and also provide the opportunity for this product to reach markets further away.
Resumo:
The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is a crucial way either to study the nature of the molecular interactions, structure and packing effects or to determine other key thermodynamic properties of ILs essential for their applications in any chemical and industrial processes. Herein, we report the speed of sound as a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into consideration their relaxation behavior. Additionally, to further improve the reliability of the speed of sound results, the density, isentropic compressibility, and isobaric heat capacity as a function of temperature and pressure are calculated using an acoustic method.
Resumo:
Pressure-induced structural modifications in scolecite were studied by means of in situ synchrotron X-ray powder diffraction and density functional computations. The experimental cell parameters were refined up to 8.5 GPa. Discontinuities in the slope of the unit-cell parameters vs. pressure dependence were observed; as a consequence, an increase in the slope of the linear pressure-volume dependence is observed at about 6 GPa, suggesting an enhanced compressibility at higher pressures. Weakening and broadening of the diffraction peaks reveals increasing structural disorder with pressure, preventing refinement of the lattice parameters above 8.5 GPa. Diffraction patterns collected during decompression show that the disorder is irreversible. Atomic coordinates within unit cells of different dimensions were determined by means of Car-Parrinello simulations. The discontinuous rise in compressibility at about 6 GPa is reproduced by the computation, allowing us to attribute it to re-organization of the hydrogen bonding network, with the formation of water dimers. Moreover we found that, with increasing pressure, the tetrahedral chains parallel to c rotate along their elongation axis and display an increasing twisting along a direction perpendicular to c. At the same time, we observed the compression of the channels. We discuss the modification of the Ca polyhedra under pressure, and the increase in coordination number (from 4 to 5) of one of the two Al atoms, resulting from the approach of a water molecule. We speculate that this last transformation triggers the irreversible disordering of the system.
Resumo:
This work addresses the experimental measurements of the pressure (0.10 <p/MPa <10.0) and temperature (293.15 <T/K <393.15) dependence of the density and derived thermodynamic properties, such as the isothermal compressibility, the isobaric expansivity, the thermal pressure coefficient, and the pressure dependence of the heat capacity of several imidazolium-based ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]; 3-methyl-1-octylimidazolium tetrafluoroborate, [omim][BF4]; 1-hexyl-3-methylimidazolium hexafluorophosphate, [hmim][PF6]; 3-methyl-1-octylimidazolium hexafluorophosphate, [omim][PF6]; 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, [bmmim][PF6]; and 1-butyl-3-methylimidazolium trifluoromethansulfonate, [bmim][CF3SO3]. These ILs were chosen to provide an understanding of the influence of the cation alkyl chain length, the number of cation substitutions, and the anion influence on the properties under study. The influence of water content in the density was also studied for the most hydrophobic IL used, [omim][PF6]. A simple ideal-volume model was employed for the prediction of the imidazolium molar volumes at ambient conditions, which proved to agree well with the experimental results.
Resumo:
When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.
Resumo:
Small angle neutron scattering (SANS) has been applied to examine the effect of high pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities upon exposure of the coal to high pressure CO2 showed that high pressure CO2 rapidly adsorbs on the coal and reaches to all pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/ CO2 interactions. In situ small angle neutron scattering on coal at high pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal’s macromolecular structure.
Resumo:
The selective hydrogenation of acetylene from ethylene rich streams was conducted at high pressure and in the presence of CO over two 1 wt% loaded Pd/TiO2 catalysts with differing dispersions. Although, the more poorly dispersed sample did not result in high acetylene conversion only a small proportion of the total available ethylene was hydrogenated to ethane. The more highly dispersed sample was able to remove acetylene to a level below the detection limit but this was at the expense of significant proportion (ca. 30%) of the available ethylene. Modification of the catalysts by exposure to triphenyl phosphine or diphenyl sulfide and subsequent reduction at 393 K led to improved performance with increased conversion of acetylene and decreased propensity to hydrogenate ethylene resulting in an overall net gain in ethylene. The higher dispersed sample which had been ligand modified provided the best results overall and in particular for the diphenyl sulfide treated sample which was able to completely eliminate acetylene and still obtain a net gain in ethylene. The differences observed are thought to be due to the creation of appropriate active ensembles of Pd atoms which are able to accommodate acetylene but have limited ability to adsorb ethylene. Sub-surface hydrogen formation was suppressed, but not eliminated, by exposure to modifier.