59 resultados para High power fiber laser

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET) is a powerful diagnostic/imaging technique requiring the production of the short-lived positron emitting isotopes C-11, N-13, O-15 and F-18 by proton irradiation of natural/enriched targets using cyclotrons. The development of PET has been hampered due to the size and shielding requirements of nuclear installations. Recent results show that when an intense laser beam interacts with solid targets, megaelectronvolt (MeV) protons capable of producing PET isotopes are generated. This report describes how to generate intense PET sources of C-11 and F-18 using a petawatt laser beam. The work describing the laser production of F-18 through a (p,n) O-18 reaction, and the subsequent synthesis of 2-[F-18] is reported for the first time. The potential for developing compact laser technology for this purpose is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ2∼1013-1014W.cm-2.μm2) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A short overview of laser-plasma acceleration of ions is presented. The focus is on some recent experimental results and the related theoretical work on advanced regimes. These latter include in particular target normal sheath acceleration using ultrashort low-energy pulses and structured targets, radiation pressure acceleration in both thick and ultrathin targets and collisionless shock acceleration in moderate density plasmas. For each approach, open issues and the need and potential for further developments are briefly discussed. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental investigations of the late-time ion structures formed in the wake of an ultrashort, intense laser pulse propagating in a tenuous plasma have been performed using the proton imaging technique. The pattern found in the wake of the laser pulse shows unexpectedly regular modulations inside a long, finite width channel. On the basis of extensive particle in cell simulations of the plasma evolution in the wake of the pulse, we interpret this pattern as due to ion modulations developed during a two-stream instability excited by the return electric current generated by the wakefield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique is proposed to control the dissociation mechanism of small diatomic molecules. This technique, relying upon the creation of a coherent nuclear wavepacket, uses intense (> 10(14) W cm(-2)), ultrashort (similar to 10 fs) infrared laser pulses in a pump and probe scheme. In applying this technique to D-2(+) good agreement has been observed between a quantum simulation and experiment. This represents a major step towards quantum state control in molecules, using optical fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of short (1-2 ps) laser pulses with solid targets at irradiances of over 1016 Wcm~2 , in the presence of a substantial prepulse has been investigated. High absorption of laser energy is found even at high angles of incidence, with evidence for a resonance absorption peak being found for S, P, and circular polarizations. It is considered that this may be a result of refraction and beam filamentation, which causes loss of distinct polarization. Measurements of hard X-ray emission (~ 100 keV) confirm a resonance absorption type peak at 45-50°, again for all three cases. Typically, 5-15% of the incident light is back-reflected by stimulated Brillouin scatter, with spatially resolved spectra showing evidence of beam hot-spots at high intensity. The possibility that filamentation and refraction of the beam can explain the lack of polarization dependence in the absorption and hard X-ray emission data is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.