5 resultados para Heuristic methods
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Boolean games are a framework for reasoning about the rational behavior of agents whose goals are formalized using propositional formulas. Compared to normal form games, a well-studied and related game framework, Boolean games allow for an intuitive and more compact representation of the agents’ goals. So far, Boolean games have been mainly studied in the literature from the Knowledge Representation perspective, and less attention has been paid on the algorithmic issues underlying the computation of solution concepts. Although some suggestions for solving specific classes of Boolean games have been made in the literature, there is currently no work available on the practical performance. In this paper, we propose the first technique to solve general Boolean games that does not require an exponential translation to normal-form games. Our method is based on disjunctive answer set programming and computes solutions (equilibria) of arbitrary Boolean games. It can be applied to a wide variety of solution concepts, and can naturally deal with extensions of Boolean games such as constraints and costs. We present detailed experimental results in which we compare the proposed method against a number of existing methods for solving specific classes of Boolean games, as well as adaptations of methods that were initially designed for normal-form games. We found that the heuristic methods that do not require all payoff matrix entries performed well for smaller Boolean games, while our ASP based technique is faster when the problem instances have a higher number of agents or action variables.
Resumo:
In this paper, we present an investigation into using fuzzy methodologies to guide the construction of high quality feasible examination timetabling solutions. The provision of automated solutions to the examination timetabling problem is achieved through a combination of construction and improvement. The enhancement of solutions through the use of techniques such as metaheuristics is, in some cases, dependent on the quality of the solution obtained during the construction process. With a few notable exceptions, recent research has concentrated on the improvement of solutions as opposed to focusing on investigating the ‘best’ approaches to the construction phase. Addressing this issue, our approach is based on combining multiple criteria in deciding on how the construction phase should proceed. Fuzzy methods were used to combine three single construction heuristics into three different pair wise combinations of heuristics in order to guide the order in which exams were selected to be inserted into the timetable solution. In order to investigate the approach, we compared the performance of the various heuristic approaches with respect to a number of important criteria (overall cost penalty, number of skipped exams, number of iterations of a rescheduling procedure required and computational time) on twelve well-known benchmark problems. We demonstrate that the fuzzy combination of heuristics allows high quality solutions to be constructed. On one of the twelve problems we obtained lower penalty than any previously published constructive method and for all twelve we obtained lower penalty than when any of the single heuristics were used alone. Furthermore, we demonstrate that the fuzzy approach used less backtracking when constructing solutions than any of the single heuristics. We conclude that this novel fuzzy approach is a highly effective method for heuristically constructing solutions and, as such, has particular relevance to real-world situations in which the construction of feasible solutions is often a difficult task in its own right.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.