3 resultados para Helianthus annuusL.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated.
Resumo:
The aim of the study was to determine the time-dependent formation of arsenic-phytochelatin (As-PC) complexes in the roots, stems and leaves of an arsenic-nontolerant plant (Helianthus annuus) during exposure to 66 mol l(-1) arsenite (As(III)) or arsenate (As(V)). We used our previously developed method of simultaneous element-specific (inductively coupled plasma mass spectrometry, ICP-MS) and molecular-specific (electrospray-ionization mass spectrometry, ES-MS) detection systems interfaced with a suitable chromatographic column and eluent conditions, which enabled us to identify and quantify As-PC complexes directly. Roots of As-exposed H. annuus contained up to 14 different arsenic species, including the complex of arsenite with two (gamma-Glu-Cys)(2)-Gly molecules [As((III))-(PC(2))(2)], the newly identified monomethylarsonic phytochelatin-2 or (gamma-Glu-Cys)(2)-Gly CH(3)As (MA((III))-PC(2)) and at least eight not yet identified species. The complex of arsenite with (gamma-Glu-Cys)(3)-Gly (As((III))-PC(3)) and the complex of arsenite with glutathione (GSH) and (gamma-Glu-Cys)(2)-Gly (GS-As((III))-PC(2)) were present in all samples (roots, stems and leaves) taken from plants exposed to As. The GS-As((III))-PC(2) complex was the dominant complex after 1 h of exposure. As((III))-PC(3) became the predominant As-PC complex after 3 h, binding up to 40% of the As present in the exposed plants. No As-PC complexes were found in sap (mainly xylem sap from the root system), in contrast to roots, stems and leaves, which is unequivocal evidence that As-PC complexes are not involved in the translocation of As from root to leaves of H. annuus.
Resumo:
Rice is a major source of inorganic arsenic (iAs) in the human diet because paddy rice. efficient at accumulating As Rice As speciation is dominated by iAs and dimethylarsinic acid (DMA). Here we review the global pattern in rice As speciation and the factors causing the variation. Rice produced in Asia shows a strong linear relationship between iAs and total As concentration with a slope of 0.78. Rice produced in Europe and the United States shows a more variable, but generally hyperbolic relationship with DMA being predominant in U.S. rice. Although there is significant genotypic variation in grain As speciation, the regional Variations are primarily attributed to environmental factors. Emerging evidence also indicates that methylated. As species in rice are derived from the soil, while rice plants lack the As methylation ability. Soil flooding and additions of organic matter increase microbial methylation of As, although the microbial community responsible for methylafion is poorly understood. Compared with iAs, methylated As species are taken up by rice roots less efficiently but are transported to the grain much, more efficiently, which may be an important factor responsible for the spikelet sterility disorder (straight head disease) in rice. DMA is a weak carcinogen, but the level of ingestion from rice consumption is much lower than that of concern. Questions that require further investigations are identified.