291 resultados para Hardness testing
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Nickel sulfamate solution was applied to mild steel substrates by the process of selective plating. The coated samples were heated to temperatures in the range of 50–1000 °C. Thermal analysis, X-ray diffraction and microscopy techniques were used to investigate the effect of secondary heating on the microstructure, mechanical properties and the composition of the surface coatings.
The microscopy analysis showed that the secondary heating caused diffusion within the coating itself and diffusion between the coating and the substrate as concentrations of iron increased in the coating and nickel appeared in the substrate. This diffusion redistribution also caused a phase transformation in the coating as NiO formed on the surface when the coating was heated in a furnace fitted with a nitrogen flow. However this transformation was found not to occur when the coating was heated in a sealed helium environment. Layer and grain growth occurred as temperature increased with the grains taking their preferred orientation as they were heated.
The surface hardness was found to initially rise up from 565 HV to 600 HV when heated to 200 °C. After 200 °C the surface hardness decreased in two stages before falling to 110 HV by 1000 °C. During tensile testing the coated samples performed marginally better in tension than the uncoated samples, however the temperatures used were not elevated high enough to show any real degradation during the tensile testing of the nickel coating that was shown during hardness testing and the microscopy analysis
Resumo:
Electroless plating of binary Ni-P, ternary Ni-Sn-P and Ni-W-P, and quaternary Ni-W-Sn-P alloy coatings was carried out in alkalicitrate baths. After the plating, several kinds of test were carried out to determine the improvement in the characteristics and properties due to the additional elements as well as to study the change in behaviour when heat treatment was applied to these coatings. The coatings were subjected to X-ray diffraction analysis where it was found that all the coatings were amorphous. Interesting surface morphology features were examined using scanning electron microscopy. Addition of a third element improved the hardness.
Resumo:
The environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at -20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.
Resumo:
One of the first attempts to develop a formal model of depth cue integration is to be found in Maloney and Landy's (1989) "human depth combination rule". They advocate that the combination of depth cues by the visual sysetem is best described by a weighted linear model. The present experiments tested whether the linear combination rule applies to the integration of texture and shading. As would be predicted by a linear combination rule, the weight assigned to the shading cue did vary as a function of its curvature value. However, the weight assigned to the texture cue varied systematically as a function of the curvature value of both cues. Here we descrive a non-linear model which provides a better fit to the data. Redescribing the stimuli in terms of depth rather than curvature reduced the goodness of fit for all models tested. These results support the hypothesis that the locus of cue integration is a curvature map, rather than a depth map. We conclude that the linear comination rule does not generalize to the integration of shading and texture, and that for these cues it is likely that integration occurs after the recovery of surface curvature.
Resumo:
The temporal and spatial extent of Holocene climate change is an area of considerable uncertainty, with solar forcing recently proposed to be the origin of cycles identified in the North Atlantic region. To address these issues we have developed an annually resolved record of changes in Irish bog tree populations over the last 7468 years which, together with radiocarbon-dated bog and lake-edge populations, extend the dataset back to 9000 yr ago. The Irish trees underpin the internationally accepted radiocarbon calibration curve, used to derive a proxy of solar activity, and allow us to test solar forcing of Holocene climate change. Tree populations and age structures provide unambiguous evidence of major shifts in Holocene surface moisture, with a dominant cyclicity of 800 yr, similar to marine cycles in the North Atlantic, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. The cycles, however, are not coherent with changes in solar activity (both being on the same absolute timescale), indicating that Holocene North Atlantic climate variability at the millennial and centennial scale is not driven by a linear response to changes in solar activity.