4 resultados para HYDRAULICS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
As a consequence of climate change there is now a more frequent occurrence of extreme rainfall events where, with higher rates of urbanisation, the built environment has become increasingly affected by flooding.. This is of particular importance in relation to the stability of bridge structures that span rivers and canals etc. In November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The rainfall was logged as the highest level of rainfall ever recorded within the UK, and as a direct consequence, unprecedented flooding occurred in Cumbria. This flooding led to the collapse of three road bridges which were generally 19th century masonry arch bridges, with relatively shallow foundations. In the UK, knowledge of the combined effect of bridge scouring and inundation has been not been particularly widely studied. Research carried out by Hamill et al [1] considered the hydraulic analysis of single arch bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to scouring. Prior to this, Bierry and Delleur [2] produced a classic paper in predicting the discharge downstream of an inundated arch, focussing on predicting afflux as opposed to bridge scour. Further work on backwater effects was carried out by Martin-Vide & Prio [3] in semi-circular arch bridges. Both pressurized and free-surface flows at the bridge were investigated. Flows on a mobile bed in clear-water conditions were compared to those with a rigid bed, but no predictive equation for scour under pressurised conditions was considered. This paper will present initial findings from an experimental investigation into the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of clear water scour, for a series of flows and model spans. The data will be presented, where results will be correlated to the most recent predictive equations that are proposed.
Resumo:
A full understanding of the hydrodynamic processes within the jet produced by a manoeuvring ship’s propeller is essential in the development and maintenance of ports, docks and harbours. In this study the predominant axial velocity component of a diffusing propeller jet was studied. The flow fields formed by four propellers, each operating at four power levels (speeds of rotation), were investigated under bollard pull conditions within a large free surface tank using Laser Doppler Anemometry. Comparison were made to existing methodologies by which a prediction of the magnitudes of the axial velocity can be made, and where deficient modifications to the methodologies have been developed. The jets were found to produce a maximum axial velocity along the initial efflux plane at a location near the blade mid-span. The position and magnitude of the axial velocity was seen to decrease as the jet entrained more flow and transitioned from the zone of flow establishment into the zone of established flow.